
Chapter 7 

One-Sample Inference 

Now that you have all this information about descriptive statistics and prob-
abilities, it is time to start inferential statistics. There are two branches of 
inferential statistics: hypothesis testing and confidence intervals. 

Hypothesis Testing: making a decision about a parameter(s) based on a 
statistic(s). 

Confidence Interval: estimating a parameter(s) based on a statistic(s). 

This chapter will describe hypothesis testing, but as was stated in Chapter 1, 
the American Statistical Association (ASA) is suggesting not discussing statis-
tical significance and p-values. So this chapter is mostly for background to 
understand previously published studies. 

7.1 Basics of Hypothesis Testing 

To understand the process of a hypothesis tests, you need to first have an under-
standing of what a hypothesis is, which is an educated guess about a parameter. 
Once you have the hypothesis, you collect data and use the data to make a 
determination to see if there is enough evidence to show that the hypothesis is 
true. However, in hypothesis testing you actually assume something else is true, 
and then you look at your data to see how likely it is to get an event that your 
data demonstrates with that assumption. If the event is very unusual, then you 
might think that your assumption is actually false. If you are able to say this 
assumption is false, then your hypothesis must be true. This is known as a proof 
by contradiction. You assume the opposite of your hypothesis is true and show 
that it can’t be true. If this happens, then your hypothesis must be true. All 
hypothesis tests go through the same process. Once you have the process down, 
then the concept is much easier. It is easier to see the process by looking at an 
example. Concepts that are needed will be detailed in this example. 
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7.1.1 Example: Basics of Hypothesis Testing 

Suppose a manufacturer of the XJ35 battery claims the mean life of the battery 
is 500 days with a standard deviation of 25 days. You are the buyer of this 
battery and you think this claim is incorrect. You would like to test your belief 
because without a good reason you can’t get out of your contract. 

Solution What do you do? 

Well first, you should know what you are trying to measure. Define the random 
variable. 

Let x = life of a XJ35 battery 

Now you are not just trying to find different x values. You are trying to find 
what the true mean is. Since you are trying to find it, it must be unknown. You 
don’t think it is 500 days. If you did, you wouldn’t be doing any testing. The 
true mean, 𝜇, is unknown. That means you should define that too. 

Let 𝜇 = mean life of a XJ35 battery 

Now what? 

You may want to collect a sample. What kind of sample? 

You could ask the manufacturers to give you batteries, but there is a chance 
that there could be some bias in the batteries they pick. To reduce the chance 
of bias, it is best to take a random sample. 

How big should the sample be? 

A sample of size 30 or more means that you can use the central limit theorem. 
Pick a sample of size 50. 

Table #7.1.1 contains the data for the sample you collected: 

Table #7.1.1: Data on Battery Life 

Battery<- read.csv( 
"https://krkozak.github.io/MAT160/battery.csv") 

head(Battery) 

## life 
## 1 491 
## 2 485 
## 3 503 
## 4 492 
## 5 482 
## 6 490 

Now what should you do? Looking at the data set, you see some of the times 
are above 500 and some are below. But looking at all of the numbers is too 
difficult. It might be helpful to calculate the mean for this sample. 

https://krkozak.github.io/MAT160/battery.csv
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df_stats(~life, data=Battery, mean) 

## mean_life 
## 1 490 

The sample mean is 491.42 days. Looking at the sample mean, one might think 
that you are right. However, the standard deviation and the sample size also 
plays a role, so maybe you are wrong. 

Before going any farther, it is time to formalize a few definitions. 

You have a guess that the mean life of a battery is not 500 days. This is opposed 
to what the manufacturer claims. There really are two hypotheses, which are 
just guesses here – the one that the manufacturer claims and the one that you 
believe. It is helpful to have names for them. 

Null Hypothesis: historical value, claim, or product specification. The symbol 
used is 𝐻𝑜. 

Alternate Hypothesis: what you want to prove. This is what you want to 
accept as true when you reject the null hypothesis. There are two symbols that 
are commonly used for the alternative hypothesis: 𝐻𝑎 or 𝐻1. The symbol 𝐻𝑎 
will be used in this book. 

In general, the hypotheses look something like this: 

𝐻0 ∶ 𝜇 = 𝜇𝑜 

𝐻𝑎 ∶ 𝜇 ≠ 𝜇𝑜 

where 𝜇𝑜 just represents the value that the claim says the population mean is 
actually equal to. 

Also, 𝐻𝑜 can be less than, greater than, or not equal to, though not equal to is 
more common these days. 

For this problem: 

𝐻𝑜 ∶ 𝜇 = 500𝑑𝑎𝑦𝑠, since the manufacturer says the mean life of a battery is 500 
days. 

𝐻𝑎 ∶ 𝜇 ≠ 500𝑑𝑎𝑦𝑠, since you believe that the mean life of the battery is not 500 
days. 

Now back to the mean. You have a sample mean of 491.42 days. Is this different 
enough to believe that you are right and the manufacturer is wrong? How 
different does it have to be? 

If you calculated a sample mean of 235 or 690, you would definitely believe the 
population mean is not 500. But even if you had a sample mean of 435 or 575 
you would probably believe that the true mean was not 500. What about 475? 
or 535? Or 483? or 514? There is some point where you would stop being so 
sure that the population mean is not 500. That point separates the values of 
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where you are sure or pretty sure that the mean is not 500 from the area where 
you are not so sure. How do you find that point? 

Well it depends on how much error you want to make. Of course you don’t 
want to make any errors, but unfortunately that is unavoidable in statistics. 
You need to figure out how much error you made with your sample. Take the 
sample mean, and find the probability of getting another sample mean less than 
it, assuming for the moment that the manufacturer is right. The idea behind 
this is that you want to know what is the chance that you could have come up 
with your sample mean even if the population mean really is 500 days. 

Chances are probabilities. So you want to find the probability that the sample 
mean of 491.42 is unusual given that the population mean is really 500 days. To 
compute this probability, you need to know how the sample mean is distributed. 
Since the sample size is at least 30, then you know the sample mean is approxi-
mately normally distributed. Now, you want to find the z-value. The z-value is
𝑧 = 491.42−500 = −2.43.√25

50 

This is more than 2 standard deviations below the mean, so that seems that the 
sample mean is usual. It might be helpful to find the probability though. Since 
you are saying that the sample mean is different from 500 days, then you are 
asking if it is greater than or less than. This means that you are in the tails of 
the normal curve. So the probability you want to find is the probability being 
more than 2.43 or less than −2.43. This is 𝑃 (−2.43 < 𝑧) + 𝑃 (𝑧 > 2.43) = 0.015 

pnorm(-2.43, 0, 1, lower.tail=TRUE)+pnorm(2.43, 0, 1, lower.tail=FALSE) 

## [1] 0.01509882 

So the probability of being in the tails is 0.015. This probability is known as a 
p-value for probability-value. This is unusual, so it is unlikely to get a sample 
mean of 491.42 if the population mean is 500 days. 

So it appears the assumption that the population mean is 500 days is wrong, 
and you can reject the manufacturer’s claim. 

But how do you quantify really small? Is 5% or 10% or 15% really small? How 
do you decide? 

Before you answer that question, a couple more definitions are needed. 
𝑥−𝜇 

√𝜎
𝑛 

𝑜Test statistic: 𝑧 = ̄ since it is calculated as part of the testing of the 

hypothesis 

p - value: probability that the test statistic will take on more extreme values 
than the observed test statistic, given that the null hypothesis is true. It is the 
probability that was calculated above. 

Now, how small is small enough? To answer that, you really want to know the 
types of errors you can make. 

http:lower.tail=TRUE)+pnorm(2.43
http:pnorm(-2.43
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There are actually only two errors that can be made. The first error is if you 
say that is false, when in fact it is true. This means you reject when was true. 
The second error is if you say that is true, when in fact it is false. This means 
you fail to reject when is false. The following table organizes this for you: 

Type of errors: 

true false 

Reject Type I error No error 
Fail to reject No error Type II error 

Thus 

Type I Error is rejecting 𝐻𝑜 when 𝐻𝑜 is true, and 

Type II Error is failing to reject 𝐻𝑜 when is 𝐻𝑜 false. 

Since these are the errors, then one can define the probabilities attached to each 
error. 

𝛼= P(type I error) = P(rejecting 𝐻𝑜 given it is true) 

𝛽= P(type II error) = P(failing to reject 𝐻𝑜 given it is false) 

𝛼 is also called the level of significance. 

Another common concept that is used is Power = 1 − 𝛽 

Now there is a relationship between 𝛼 and 𝛽. They are not complements of each 
other. How are they related? 

If 𝛼 increases that means the chances of making a type I error will increase. 
It is more likely that a type I error will occur. It makes sense that you are 
less likely to make type II errors, only because you will be rejecting more often. 
You will be failing to reject less, and therefore, the chance of making a type II 
error will decrease. Thus, as 𝛼 increases, 𝛽 will decrease, and vice versa. That 
makes them seem like complements, but they aren’t complements. What gives? 
Consider one more factor – sample size. 

Consider if you have a larger sample that is representative of the population, 
then it makes sense that you have more accuracy then with a smaller sample. 
Think of it this way, which would you trust more, a sample mean of 490 if you 
had a sample size of 35 or sample size of 350 (assuming a representative sample)? 
Of course the 350 because there are more data points and so more accuracy. If 
you are more accurate, then there is less chance that you will make any error. 
By increasing the sample size of a representative sample, you decrease both 𝛼 
and 𝛽. 
Summary of all of this: 

1. For a certain sample size, n, if 𝛼 increases, 𝛽 decreases. 
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2. For a certain level of significance, 𝛼, if n increases, 𝛽 decreases. 

Now how do you find 𝛼 and 𝛽? Well 𝛼 is actually chosen. There are only two 
values that are usually picked for 𝛼: 0.01 and 0.05. is very difficult to find 𝛽, so 
usually it isn’t found. If you want to make sure it is small you take as large of 
a sample as you can afford provided it is a representative sample. This is one 
use of the Power. You want to be small and the Power of the test is large. The 
Power word sounds good. 

Which pick of 𝛼 do you pick? Well that depends on what you are working 
on. Remember in this example you are the buyer who is trying to get out of a 
contract to buy these batteries. If you create a type I error, you said that the 
batteries are bad when they aren’t, most likely the manufacturer will sue you. 
You want to avoid this. You might pick 𝛼 to be 0.01. This way you have a 
small chance of making a type I error. Of course this means you have more of a 
chance of making a type II error. No big deal right? What if the batteries are 
used in pacemakers and you tell the person that their pacemaker’s batteries are 
good for 500 days when they actually last less, that might be bad. If you make 
a type II error, you say that the batteries do last 500 days when they last less, 
then you have the possibility of killing someone. You certainly do not want to 
do this. In this case you might want to pick 𝛼 as 0.05. If both errors are equally 
bad, then pick 𝛼 as 0.05. 

The above discussion is why the choice of depends on what you are researching. 
As the researcher, you are the one that needs to decide what level to use based 
on your analysis of the consequences of making each error is. 

If a type I error is really bad, then pick 𝛼= 0.01. 

If a type II error is really bad, then pick 𝛼= 0.05 

If neither error is bad, or both are equally bad, then pick 𝛼 = 0.05 

Usually 𝛼 is picked to be 0.05 in most cases. 

The main thing is to always pick the 𝛼 before you collect the data and start the 
test. 

The above discussion was long, but it is really important information. If you 
don’t know what the errors of the test are about, then there really is no point 
in making conclusions with the tests. Make sure you understand what the two 
errors are and what the probabilities are for them. 

Now it is time to go back to the example and put this all together. This is the 
basic structure of testing a hypothesis, usually called a hypothesis test. Since 
this one has a test statistic involving z, it is also called a z-test. And since there 
is only one sample, it is usually called a one-sample z-test. 

7.1.2 Example: Battery Example Revisited. 
1. State the random variable and the parameter in words 
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x = life of battery 

𝜇 = mean life of a XJ35 battery 

2. State the null and alternative hypothesis and the level of significance 

𝐻𝑜 ∶ 𝜇 = 500 

𝐻𝑎 ∶ 𝜇 ≠ 500 

𝛼 = 0.05 (from above discussion about consequences) 

3. State and check the assumptions for a hypothesis test 

Every hypothesis has some assumptions that be met to make sure that the 
results of the hypothesis are valid. The assumptions are different for each test. 
This test has the following assumptions. 

a. A random sample of size n is taken. 

This occurred in this example, since it was stated that a random sample of 50 
battery lives were taken. 

b. The population standard deviation is known. 

This is true, since it was given in the problem. 

c. The sample size is at least 30 or the population of the random variable is 
normally distributed. 

The sample size was 30, so this condition is met. 

4. Find the sample statistic, test statistic, and p-value 

The test statistic depends on how many samples there are, what parameter you 
are testing, and assumptions that need to be checked. In this case, there is one 
sample and you are testing the mean. The assumptions were checked above. 

Sample statistic: 
df_stats(~life, data=Battery, mean) 

## mean_life 
## 1 490 

Test statistic: The z-value is 𝑧 = 491.42−400 = −2.43.25√𝑛 

p-value: 𝑃 (−2.43 < 𝑧) + 𝑃 (𝑧 > 2.43) = 0.015 

5. Conclusion: 

Now what? Well, this p-value is 0.015. This is a lot smaller than the amount 
of error you would accept in the problem 𝛼 = 0.05. That means that finding 
a sample mean less than 490 days is unusual to happen if is true. This should 
make you think that is not true. You should reject 𝐻𝑜. 
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In fact, in general: 

Reject 𝐻𝑜 if the p-value < 𝛼 

Fail to reject 𝐻𝑜 if the p-value ≥ 𝛼. 
6. Interpretation: 

Since you rejected 𝐻𝑜, what does this mean in the real world? That it what 
goes in the interpretation. Since you rejected the claim by the manufacturer 
that the mean life of the batteries is 500 days, then you now can believe that 
your hypothesis was correct. In other words, there is enough evidence to support 
that the mean life of the battery is less than 500 days. 

Now that you know that the batteries last less than 500 days, should you cancel 
the contract? Statistically, there is evidence that the batteries do not last as 
long as the manufacturer says they should. However, based on this sample 
there are only ten days less on average that the batteries last. There may not 
be practical significance in this case. Ten days do not seem like a large difference. 
In reality, if the batteries are used in pacemakers, then you would probably tell 
the patient to have the batteries replaced every year. You have a large buffer 
whether the batteries last 490 days or 500 days. It seems that it might not be 
worth it to break the contract over ten days. What if the 10 days was practically 
significant? Are there any other things you should consider? You might look 
at the business relationship with the manufacturer. You might also look at how 
much it would cost to find a new manufacturer. These are also questions to 
consider before making any changes. What this discussion should show you is 
that just because a hypothesis has statistical significance does not mean it has 
practical significance. The hypothesis test is just one part of a research process. 
There are other pieces that you need to consider. 

That’s it. That is what a hypothesis test looks like. All hypothesis tests are 
done with the same six steps. Those general six steps are outlined below. 

1. State the random variable and the parameter in words. This is where you 
are defining what the unknowns are in this problem. 

x = random variable 

𝜇 = mean of random variable, if the parameter of interest is the mean. There 
are other parameters you can test, and you would use the appropriate symbol 
for that parameter. 

2. State the null and alternative hypotheses and the level of significance 

𝐻𝑜 ∶ 𝜇 = 𝜇𝑜, where 𝜇𝑜 is the known mean 

𝐻𝑎 ∶ 𝜇 ≠ 𝜇𝑜, You can replace ≠ with < or > but usually you use ≠ 

Also, state your level here. 

3. State and check the assumptions for a hypothesis test 
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Each hypothesis test has its own assumptions. They will be stated when the 
different hypothesis tests are discussed. 

4. Find the sample statistic, test statistic, and p-value 

This depends on what parameter you are working with, how many samples, and 
the assumptions of the test. Technology will be used to find the sample statistic, 
test statistic, and p-value. 

5. Conclusion 

This is where you write reject 𝐻𝑜 or fail to reject 𝐻𝑜. The rule is: if the p-value 
< 𝛼, then reject 𝐻𝑜. If the p-value ≥ 𝛼, then fail to reject 𝐻𝑜 

6. Interpretation 

This is where you interpret in real world terms the conclusion to the test. The 
conclusion for a hypothesis test is that you either have enough evidence to 
support 𝐻𝑎, or you do not have enough evidence to support 𝐻𝑎. 

Sorry, one more concept about the conclusion and interpretation. First, the 
conclusion is that you reject or you fail to reject 𝐻𝑜. Why was it said like this? 
It is because you never accept the null hypothesis. If you wanted to accept the 
null hypothesis, then why do the test in the first place? In the interpretation, 
you either have enough evidence to support 𝐻𝑎, or you do not have enough 
evidence to support 𝐻𝑎. You wouldn’t want to go to all this work and then find 
out you wanted to accept the claim. Why go through the trouble? You always 
want to have enough evidence to support the alternative hypothesis. Sometimes 
you can do that and sometimes you can’t. If you don’t have enough evidence to 
support 𝐻𝑎, it doesn’t mean you support the null hypothesis; it just means you 
can’t support the alternative hypothesis. Here is an example to demonstrate 
this. 

7.1.3 Example: Conclusions in Hypothesis Tests 
In the U.S. court system a jury trial could be set up as a hypothesis test. To 
really help you see how this works, let’s use OJ Simpson as an example. In 
the court system, a person is presumed innocent until he/she is proven guilty, 
and this is your null hypothesis. OJ Simpson was a football player in the 1970s. 
In 1994 his ex-wife and her friend were killed. OJ Simpson was accused of the 
crime, and in 1995 the case was tried. The prosecutors wanted to prove OJ was 
guilty of killing his wife and her friend, and that is the alternative hypothesis. 
In this case, a verdict of not guilty was given. That does not mean that he is 
innocent of this crime. It means there was not enough evidence to prove he was 
guilty. Many people believe that OJ was guilty of this crime, but the jury did 
not feel that the evidence presented was enough to show there was guilt. The 
verdict in a jury trial is always guilty or not guilty! 

The same is true in a hypothesis test. There is either enough or not enough 
evidence to support the alternative hypothesis. It is not that you proved the 
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null hypothesis true. 

When identifying hypothesis, it is important to state your random variable and 
the appropriate parameter you want to make a decision about. If you count 
something, then the random variable is the number of whatever you counted. 
The parameter is the proportion of what you counted. If the random variable is 
something you measured, then the parameter is the mean of what you measured. 
(Note: there are other parameters you can calculate, and some analysis of those 
will be presented in later chapters.) 

7.1.4 Example: Stating Hypotheses 
Identify the hypotheses necessary to test the following statements: 

a. The average salary of a teacher is different from $30,000. 

Solution: 

x = salary of teacher 

𝜇 = mean salary of teacher 

The guess is that 𝜇 ≠ 30000 and that is the alternative hypothesis. 

The null hypothesis has the same parameter and number with an equal sign. 

𝐻𝑜 ∶ 𝜇 = 30000 𝐻𝑎 ∶ 𝜇 ≠ 30000 

b. The proportion of students who like math is not 10%. 

Solution: 

x = number of students who like math 

p = proportion of students who like math 

The guess is that p is not 0.10 and that is the alternative hypothesis. 𝐻𝑜 ∶ 𝑝 = 
0.10 𝐻𝑎 ∶ 𝑝 ≠ 0.10 

c. The average age of students in this class differs from 21. 

Solution: 

x = age of students in this class 

𝜇=mean age of students in this class 

The guess is that 𝜇 ≠ 21 and that is the alternative hypothesis. 𝐻𝑜 ∶ 𝜇 = 21 
𝐻𝑎 ∶ 𝜇 ≠ 21 

7.1.5 Example: Stating Type I and II Errors and Picking 
Level of Significance 

a. The plant-breeding department at a major university developed a new 
hybrid raspberry plant called YumYum Berry. Based on research data, the 
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claim is made that from the time shoots are planted 90 days on average 
are required to obtain the first berry with a standard deviation of 9.2 days. 
A corporation that is interested in marketing the product tests 60 shoots 
by planting them and recording the number of days before each plant 
produces its first berry. The sample mean is 92.3 days. The corporation 
wants to know if the mean number of days is more than the 90 days claimed. 
State the type I and type II errors in terms of this problem, consequences 
of each error, and state which level of significance to use. 

Solution: 

x = time to first berry for YumYum Berry plant 

= mean time to first berry for YumYum Berry plant 

Type I Error: If the corporation does a type I error, then they will say that the 
plants take longer to produce than 90 days when they don’t. They probably 
will not want to market the plants if they think they will take longer. They will 
not market them even though in reality the plants do produce in 90 days. They 
may have loss of future earnings, but that is all. 

Type II error: The corporation do not say that the plants take longer then 90 
days to produce when they do take longer. Most likely they will market the 
plants. The plants will take longer, and so customers might get upset and then 
the company would get a bad reputation. This would be really bad for the 
company. 

Level of significance: It appears that the corporation would not want to make 
a type II error. Pick a 5% level of significance, 𝛼 = 0.05. 

b. A concern was raised in Australia that the percentage of deaths of Abo-
riginal prisoners was higher than the percent of deaths of non-indigenous 
prisoners, which is 0.27%. State the type I and type II errors in terms of 
this problem, consequences of each error, and state which level of signifi-
cance to use. 

Solution: 

x = number of Aboriginal prisoners who have died 

p = proportion of Aboriginal prisoners who have died 

Type I error: Rejecting that the proportion of Aboriginal prisoners who died 
was 0.27%, when in fact it was 0.27%. This would mean you would say there 
is a problem when there isn’t one. You could anger the Aboriginal community, 
and spend time and energy researching something that isn’t a problem. 

Type II error: Failing to reject that the proportion of Aboriginal prisoners who 
died was 0.27%, when in fact it is higher than 0.27%. This would mean that 
you wouldn’t think there was a problem with Aboriginal prisoners dying when 
there really is a problem. You risk causing deaths when there could be a way 
to avoid them. 
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Level of significance: It appears that both errors may be issues in this case. You 
wouldn’t want to anger the Aboriginal community when there isn’t an issue, and 
you wouldn’t want people to die when there may be a way to stop it. It may 
be best to pick a 5% level of significance, 𝛼 = 0.05. 
Hint – hypothesis testing is really easy if you follow the same recipe every time. 
The only differences in the various problems are the assumptions of the test and 
the test statistic you calculate so you can find the p-value. Do the same steps, 
in the same order, with the same words, every time and these problems become 
very easy. 

7.1.6 Homework 

For the problems in this section, a question is being asked. This is 
to help you understand what the hypotheses are. You are not to run 
any hypothesis tests nor come up with any conclusions in this section. 

1. The Arizona Republic/Morrison/Cronkite News poll published on Mon-
day, October 20, 2016, found 390 of the registered voters surveyed favor 
Proposition 205, which would legalize marijuana for adults. The statewide 
telephone poll surveyed 779 registered voters between Oct. 10 and Oct. 15. 
(Sanchez, 2016) Fifty-five percent of Colorado residents supported the le-
galization of marijuana. Does the data provide evidence that the percent-
age of Arizona residents who support legalization of marijuana is different 
from the proportion of Colorado residents who support it. State the ran-
dom variable, population parameter, and hypotheses. 

2. According to the February 2008 Federal Trade Commission report on con-
sumer fraud and identity theft, 23% of all complaints in 2007 were for 
identity theft. In that year, Alaska had 321 complaints of identity theft 
out of 1,432 consumer complaints (”Consumer fraud and,” 2008). Does 
this data provide enough evidence to show that Alaska had a different pro-
portion of identity theft than 23%? State the random variable, population 
parameter, and hypotheses. 

3. The Kyoto Protocol was signed in 1997, and required countries to start re-
ducing their carbon emissions. The protocol became enforceable in Febru-
ary 2005. In 2004, the mean CO2 emission was 4.87 metric tons per capita. 
Is there enough evidence to show that the mean CO2 emission is different 
in 2010 than in 2004? State the random variable, population parameter, 
and hypotheses. 

4. The FDA regulates that fish that is consumed is allowed to contain 1.0 
mg/kg of mercury. In Florida, bass fish were collected in 53 different 
lakes to measure the amount of mercury in the fish. Do the data provide 
enough evidence to show that the fish in Florida lakes has a different 
amount of mercury than the allowable amount? State the random variable, 
population parameter, and hypotheses. 
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5. The Arizona Republic/Morrison/Cronkite News poll published on Mon-
day, October 20, 2016, found 390 of the registered voters surveyed favor 
Proposition 205, which would legalize marijuana for adults. The statewide 
telephone poll surveyed 779 registered voters between Oct. 10 and Oct. 15. 
(Sanchez, 2016) Fifty-five percent of Colorado residents supported the le-
galization of marijuana. Does the data provide evidence that the percent-
age of Arizona residents who support legalization of marijuana is different 
from the proportion of Colorado residents who support it. State the type 
I and type II errors in this case, consequences of each error type for this 
situation from the perspective of the manufacturer, and the appropriate 
alpha level to use. State why you picked this alpha level. 

6. According to the February 2008 Federal Trade Commission report on con-
sumer fraud and identity theft, 23% of all complaints in 2007 were for 
identity theft. In that year, Alaska had 321 complaints of identity theft 
out of 1,432 consumer complaints (”Consumer fraud and,” 2008). Does 
this data provide enough evidence to show that Alaska had a different 
proportion of identity theft than 23%? State the type I and type II errors 
in this case, consequences of each error type for this situation from the 
perspective of the state of Alaska, and the appropriate alpha level to use. 
State why you picked this alpha level. 

7. The Kyoto Protocol was signed in 1997, and required countries to start re-
ducing their carbon emissions. The protocol became enforceable in Febru-
ary 2005. In 2004, the mean CO2 emission was 4.87 metric tons per capita. 
Is there enough evidence to show that the mean CO2 emission is lower in 
2010 than in 2004? State the type I and type II errors in this case, con-
sequences of each error type for this situation from the perspective of the 
agency overseeing the protocol, and the appropriate alpha level to use. 
State why you picked this alpha level. 

8. The FDA regulates that fish that is consumed is allowed to contain 1.0 
mg/kg of mercury. In Florida, bass fish were collected in 53 different 
lakes to measure the amount of mercury in the fish. Do the data provide 
enough evidence to show that the fish in Florida lakes has different amount 
of mercury than the allowable amount? State the type I and type II errors 
in this case, consequences of each error type for this situation from the 
perspective of the FDA, and the appropriate alpha level to use. State why 
you picked this alpha level. 

7.2 One-Sample Proportion Test 
There are many different parameters that you can test. There is a test for 
the mean, such as was introduced with the z-test. There is also a test for the 
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population proportion, p. This is where you might be curious if the proportion 
of students who smoke at your school is lower than the proportion in your area. 
Or you could question if the proportion of accidents caused by teenage drivers 
who do not have a drivers’ education class is more than the national proportion. 

To test a population proportion, there are a few things that need to be defined 
first. Usually, Greek letters are used for parameters and Latin letters for statis-
tics. When talking about proportions, it makes sense to use p for proportion. 
The Greek letter for p is 𝜋, but that is too confusing to use. Instead, it is best 
to use p for the population proportion. That means that a different symbol is 
needed for the sample proportion. The convention is to use, ̂𝑝, known as p-hat. 
This way you know that p is the population proportion, and that 𝑝̂ is the sample 
proportion related to it. 

Now proportion tests are about looking for the percentage of individuals who 
have a particular attribute. You are really looking for the number of successes 
that happen. Thus, a proportion test involves a binomial distribution. 

Hypothesis Test for One Population Proportion (1-Prop Test) 

1. State the random variable and the parameter in words. 

x = number of successes 

p = proportion of successes 

2. State the null and alternative hypotheses and the level of significance 

𝐻𝑜 ∶ 𝑝 = 𝑝𝑜, where 𝑝𝑜 is the known proportion 

𝐻𝑎 ∶ 𝑝 ≠ 𝑝𝑜, you can also use < or >, but ≠ is the more common one to use. 

Also, state your 𝛼 level here. 

3. State and check the assumptions for a hypothesis test 

a. State: A simple random sample of size n is taken. Check: describe how 
the sample was collected 

b. State: The conditions for the binomial experiment are satisfied. Check: 
Show all four properties are true. 

c. State: The sampling distribution of 𝑝̂ is normally distributed. Check: you 
need to show that 𝑝 ∗ 𝑛 ≥ 5 and 𝑞 ∗ 𝑛 ≥ 5, where 𝑞 = 1 − 𝑝. If this require-
ment is true, then the sampling distribution of 𝑝̂ is well approximated by 
a normal curve. 

4. Find the sample statistic, test statistic, and p-value 

This will be computed on R Studio using the command 

prop.test(r, n, p=what Ho says) 

where r=observed number of successes and n = number of trials. 
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5. Conclusion 

This is where you write reject or fail to reject 𝐻𝑜. The rule is: if the p-value 
< 𝛼 , then reject 𝐻0. If the p-value ≥ 𝛼, then fail to reject 𝐻𝑜 

6. Interpretation 

This is where you interpret in real world terms the conclusion to the test. The 
conclusion for a hypothesis test is that you either have enough evidence to 
support 𝐻𝑎, or you do not have enough evidence to support 𝐻𝑎. 

7.2.1 Example: Hypothesis Test for One Proportion 

A concern was raised in Australia that the percentage of deaths of Aboriginal 
prisoners was different than the percent of deaths of non-Aboriginal prisoners, 
which is 0.27%. A sample of six years (1990-1995) of data was collected, and it 
was found that out of 14,495 Aboriginal prisoners, 51 died (”Indigenous deaths 
in,” 1996). Do the data provide enough evidence to show that the proportion 
of deaths of Aboriginal prisoners is different from 0.27%? 

Solution: 

1. State the random variable and the parameter in words. 

x = number of Aboriginal prisoners who die 

p = proportion of Aboriginal prisoners who die 

2. State the null and alternative hypotheses and the level of significance 

𝐻𝑜 ∶ 𝑝 = 0.0027 

𝐻𝑎 ∶ 𝑝 ≠ 0.0027 

From Example #7.1.5, the argument was made to pick 5% for the level of 
significance. So 𝛼 = 0.05 

3. State and check the assumptions for a hypothesis test 

a. A simple random sample of 14,495 Aboriginal prisoners was taken. Check: 
The sample was not a random sample, since it was data from six years. It 
is the numbers for all prisoners in these six years, but the six years were 
not picked at random. Unless there was something special about the six 
years that were chosen, the sample is probably a representative sample. 
This assumption is probably met. 

b. The properties of a binomial experiment are met. There are 14,495 prison-
ers in this case. Check: The prisoners are all Aboriginals, so you are not 
mixing Aboriginal with non-Aboriginal prisoners. There are only two out-
comes, either the prisoner dies or doesn’t. The chance that one prisoner 
dies over another may not be constant, but if you consider all prisoners the 
same, then it may be close to the same probability. Thus the conditions 
for the binomial distribution are satisfied 
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c. The sampling distribution of 𝑝̂ can be approximated with a normal dis-
tributed. Check: In this case p = 0.0027 and n = 14,495. 𝑛∗𝑝 = 39.1365 ≥ 
5 and 𝑛∗𝑞 = 14455.86 ≥ 5. So, the sampling distribution for 𝑝̂ is normally 
distributed. 

4. Find the sample statistic, test statistic, and p-value 

Use the following command in R Studio: 
prop.test(51, 14495, p=0.0027) 

## 
## 1-sample proportions test with continuity correction 
## 
## data: 51 out of 14495 
## X-squared = 3.3084, df = 1, p-value = 0.06893 
## alternative hypothesis: true p is not equal to 0.0027 
## 95 percent confidence interval: 
## 0.002647440 0.004661881 
## sample estimates: 
## p 
## 0.003518455 

Sample Proportion: ̂𝑝 = 0.0035 

Test Statistic: 𝜒2 = 3.3085 

p-value: 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.06893 

5. Conclusion 

Since the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 ≥ 0.05, then fail to reject 𝐻𝑜. 

6. Interpretation 

There is not enough evidence to support that the proportion of deaths of Abo-
riginal prisoners is different from non-Aboriginal prisoners. 

7.2.2 Example: Hypothesis Test for One Proportion 

A researcher who is studying the effects of income levels on breastfeeding of 
infants hypothesizes that countries with a low income level have a different 
rate of infant breastfeeding than higher income countries. It is known that in 
Germany, considered a high-income country by the World Bank, 22% of all 
babies are breastfeed. In Tajikistan, considered a low-income country by the 
World Bank, researchers found that in a random sample of 500 new mothers 
that 125 were breastfeeding their infant. At the 5% level of significance, does 
this show that low-income countries have a different incident of breastfeeding? 

Solution: 

1. State you random variable and the parameter in words. 

http:14455.86
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x = number of woman who breastfeed in a low-income country 

p = proportion of woman who breastfeed in a low-income country 

2. State the null and alternative hypotheses and the level of significance 

𝐻𝑜 ∶ 𝑝 = 0.22 

𝐻𝑎 ∶ 𝑝 ≠ 0.22 

𝛼 = 0.05 

3. State and check the assumptions for a hypothesis test 

a. A simple random sample of 500 breastfeeding habits of woman in a low-
income country was taken. Check: This was stated in the problem. 

b. The properties of a Binomial Experiment have been met. Check: There 
were 500 women in the study. The women are considered identical, though 
they probably have some differences. There are only two outcomes, either 
the woman breastfeeds or she doesn’t. The probability of a woman breast-
feeding is probably not the same for each woman, but it is probably not 
very different for each woman. The conditions for the binomial distribu-
tion are satisfied 

c. The sampling distribution of 𝑝̂ can be approximated with a normal dis-
tributed. Check: In this case, n = 500 and p = 0.22. 𝑛 ∗ 𝑝 = 110 ≥ 5 and
𝑛 ∗ 𝑞 = 390 ≥ 5, so the sampling distribution of 𝑝̂ is well approximated by 
a normal curve. 

4. Find the sample statistic, test statistic, and p-value 

On R studio, use the following command 

prop_test(125, 500, p=0.22) 

## 
## 1-sample proportions test with continuity correction 
## 
## data: 125 out of 500 
## X-squared = 2.4505, df = 1, p-value = 0.1175 
## alternative hypothesis: true p is not equal to 0.22 
## 95 percent confidence interval: 
## 0.2131062 0.2908059 
## sample estimates: 
## p 
## 0.25 

Sample Statistic: 𝑝̂ = 0.25 test Statistic: 𝜒2 = 2.4505 p-value: 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 
0.1175 

5. Conclusion 
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Since the p-value is more than 0.05, you fail to reject 𝐻𝑜. 

6. Interpretation 

There is not enough evidence to support that the proportion of women who 
breastfeed in low-income countries is different from the proportion of women in 
high-income countries who breastfeed. 

Notice, the conclusion is that there wasn’t enough evidence to support 𝐻𝑎. The 
conclusion was not that you support 𝐻𝑜. There are many reasons why you 
can’t say that 𝐻𝑜 is true. It could be that the countries you chose were not very 
representative of what truly happens. If you instead looked at all high-income 
countries and compared them to low-income countries, you might have different 
results. It could also be that the sample you collected in the low-income country 
was not representative. It could also be that income level is not an indication 
of breastfeeding habits. It could be that the sample that was taken didn’t show 
evidence but another sample would show evidence. There could be other factors 
involved. This is why you can’t say that you support 𝐻𝑜. There are too many 
other factors that could be the reason that you failed to reject 𝐻0. 

7.2.3 Homework 

In each problem show all steps of the hypothesis test. If some of the 
assumptions are not met, note that the results of the test may not be 
correct and then continue the process of the hypothesis test. 

1. The Arizona Republic/Morrison/Cronkite News poll published on Mon-
day, October 20, 2016, found 390 of the registered voters surveyed favor 
Proposition 205, which would legalize marijuana for adults. The statewide 
telephone poll surveyed 779 registered voters between Oct. 10 and Oct. 15. 
(Sanchez, 2016) Fifty-five percent of Colorado residents supported the le-
galization of marijuana. Does the data provide evidence that the percent-
age of Arizona residents who support legalization of marijuana is different 
from the proportion of Colorado residents who support it. Test at the 1% 
level. 

2. In July of 1997, Australians were asked if they thought unemployment 
would increase, and 47% thought that it would increase. In November of 
1997, they were asked again. At that time 284 out of 631 said that they 
thought unemployment would increase (”Morgan Gallup poll,” 2013). At 
the 5% level, is there enough evidence to show that the proportion of 
Australians in November 1997 who believe unemployment would increase 
is different from the proportion who felt it would increase in July 1997? 

3. According to the February 2008 Federal Trade Commission report on con-
sumer fraud and identity theft, 23% of all complaints in 2007 were for 
identity theft. In that year, Arkansas had 1,601 complaints of identity 
theft out of 3,482 consumer complaints (”Consumer fraud and,” 2008). 
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Does this data provide enough evidence to show that Arkansas had a 
different percentage of identity theft than 23%? Test at the 5% level. 

4. According to the February 2008 Federal Trade Commission report on con-
sumer fraud and identity theft, 23% of all complaints in 2007 were for 
identity theft. In that year, Alaska had 321 complaints of identity theft 
out of 1,432 consumer complaints (”Consumer fraud and,” 2008). Does 
this data provide enough evidence to show that Alaska had a different 
proportion of identity theft than 23%? Test at the 5% level. 

5. In 2001, the Gallup poll found that 81% of American adults believed 
that there was a conspiracy in the death of President Kennedy. In 2013, 
the Gallup poll asked 1,039 American adults if they believe there was 
a conspiracy in the assassination, and found that 634 believe there was 
a conspiracy (”Gallup news service,” 2013). Do the data show that the 
proportion of Americans who believe in this conspiracy has changed? Test 
at the 1% level. 

6. In 2008, there were 507 children in Arizona out of 32,601 who were diag-
nosed with Autism Spectrum Disorder (ASD) (”Autism and developmen-
tal,” 2008). Nationally 1 in 88 children are diagnosed with ASD (”CDC 
features -,” 2013). Is there sufficient data to show that the incident of 
ASD is different in Arizona than nationally? Test at the 1% level. 

7.3 One-Sample Test for the Mean 

It is time to go back to look at the test for the mean that was introduced in 
section 7.1 called the z-test. In the example, you knew what the population 
standard deviation, 𝜎, was. What if you don’t know 𝜎? 

If you don’t know 𝜎, then you don’t know the sampling distribution of the mean. 
Can it be found another way? The answer is of course, yes. One way is to use 
a method called resampling. The following example explains how resampling is 
performed. 

7.3.1 Example: Resampling 

A random sample of 10 body mass index (BMI) were taken from the NHANES 
Data frame The mean BMI of Australians is 27.2 𝑘𝑔/𝑚2. Is there evidence that 
Americans have a different BMI from people in Australia. Test at the 5% level. 

Solution The standard deviation of BMI is not known for Australians. To 
answer this questions, first look at the sample from NHANES. 

** Table 7.3.1: Sample of size 10 from NHANES data frame ** 
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sample_NHANES_10<-
sample_n(NHANES, size=10) 

sample_NHANES_10 

## # A tibble: 10 x 76 
## ID SurveyYr Gender Age AgeDecade AgeMonths Race1 
## <int> <fct> <fct> <int> <fct> <int> <fct> 
## 1 66193 2011_12 female 25 " 20-29" NA Black 
## 2 64048 2011_12 female 54 " 50-59" NA White 
## 3 55614 2009_10 female 4 " 0-9" 56 Mexi~ 
## 4 60144 2009_10 male 57 " 50-59" 690 White 
## 5 56347 2009_10 female 2 " 0-9" 28 Other 
## 6 60392 2009_10 female 11 " 10-19" 134 Black 
## 7 60160 2009_10 female 63 " 60-69" 758 White 
## 8 58215 2009_10 female 54 " 50-59" 659 White 
## 9 71016 2011_12 female 5 " 0-9" NA Mexi~ 
## 10 63850 2011_12 female 49 " 40-49" NA White 
## # ... with 69 more variables: Race3 <fct>, Education <fct>, 
## # MaritalStatus <fct>, HHIncome <fct>, HHIncomeMid <int>, 
## # Poverty <dbl>, HomeRooms <int>, HomeOwn <fct>, 
## # Work <fct>, Weight <dbl>, Length <dbl>, HeadCirc <dbl>, 
## # Height <dbl>, BMI <dbl>, BMICatUnder20yrs <fct>, 
## # BMI_WHO <fct>, Pulse <int>, BPSysAve <int>, 
## # BPDiaAve <int>, BPSys1 <int>, BPDia1 <int>, 
## # BPSys2 <int>, BPDia2 <int>, BPSys3 <int>, BPDia3 <int>, 
## # Testosterone <dbl>, DirectChol <dbl>, TotChol <dbl>, 
## # UrineVol1 <int>, UrineFlow1 <dbl>, UrineVol2 <int>, 
## # UrineFlow2 <dbl>, Diabetes <fct>, DiabetesAge <int>, 
## # HealthGen <fct>, DaysPhysHlthBad <int>, 
## # DaysMentHlthBad <int>, LittleInterest <fct>, 
## # Depressed <fct>, nPregnancies <int>, nBabies <int>, 
## # Age1stBaby <int>, SleepHrsNight <int>, 
## # SleepTrouble <fct>, PhysActive <fct>, 
## # PhysActiveDays <int>, TVHrsDay <fct>, CompHrsDay <fct>, 
## # TVHrsDayChild <int>, CompHrsDayChild <int>, 
## # Alcohol12PlusYr <fct>, AlcoholDay <int>, 
## # AlcoholYear <int>, SmokeNow <fct>, Smoke100 <fct>, 
## # Smoke100n <fct>, SmokeAge <int>, Marijuana <fct>, 
## # AgeFirstMarij <int>, RegularMarij <fct>, 
## # AgeRegMarij <int>, HardDrugs <fct>, SexEver <fct>, 
## # SexAge <int>, SexNumPartnLife <int>, 
## # SexNumPartYear <int>, SameSex <fct>, 
## # SexOrientation <fct>, PregnantNow <fct> 

The mean BMI from this sample is 
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df_stats(~BMI, data=sample_NHANES_10, mean) 

## mean_BMI 
## 1 23.58889 

The sample mean for Americans is different from the mean BMI for Australians, 
but could it just be by chance. Suppose you take another sample of size 10, 
but you only have these 10 BMIs to work with. So how could you do this. 
One way is to assume that the sample you took is representative of the entire 
population, and so you create a population by copying this sample over and 
over again. So you could have over 1000 copies of this sample of 10 BMIs. 
Then take a sample of size 10 from this created population. When doing this, 
you could conceivably choose the same number several times that was in the 
original sample and not choose some of the numbers that were in the original 
sample. Instead of physically creating this new population, you could just take 
samples from your original sample but with replacement. This means that you 
randomly pick the first number, record it, and then put it back that value back 
before collecting the next number. This kind a sampling is called randomization 
sampling. A sample using randomization could be 

Table #7.3.1a 

resample(sample_NHANES_10) 

## # A tibble: 10 x 77 
## ID SurveyYr Gender Age AgeDecade AgeMonths Race1 
## <int> <fct> <fct> <int> <fct> <int> <fct> 
## 1 71016 2011_12 female 5 " 0-9" NA Mexi~ 
## 2 64048 2011_12 female 54 " 50-59" NA White 
## 3 55614 2009_10 female 4 " 0-9" 56 Mexi~ 
## 4 71016 2011_12 female 5 " 0-9" NA Mexi~ 
## 5 55614 2009_10 female 4 " 0-9" 56 Mexi~ 
## 6 60144 2009_10 male 57 " 50-59" 690 White 
## 7 56347 2009_10 female 2 " 0-9" 28 Other 
## 8 60160 2009_10 female 63 " 60-69" 758 White 
## 9 64048 2011_12 female 54 " 50-59" NA White 
## 10 55614 2009_10 female 4 " 0-9" 56 Mexi~ 
## # ... with 70 more variables: Race3 <fct>, Education <fct>, 
## # MaritalStatus <fct>, HHIncome <fct>, HHIncomeMid <int>, 
## # Poverty <dbl>, HomeRooms <int>, HomeOwn <fct>, 
## # Work <fct>, Weight <dbl>, Length <dbl>, HeadCirc <dbl>, 
## # Height <dbl>, BMI <dbl>, BMICatUnder20yrs <fct>, 
## # BMI_WHO <fct>, Pulse <int>, BPSysAve <int>, 
## # BPDiaAve <int>, BPSys1 <int>, BPDia1 <int>, 
## # BPSys2 <int>, BPDia2 <int>, BPSys3 <int>, BPDia3 <int>, 
## # Testosterone <dbl>, DirectChol <dbl>, TotChol <dbl>, 
## # UrineVol1 <int>, UrineFlow1 <dbl>, UrineVol2 <int>, 
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## # UrineFlow2 <dbl>, Diabetes <fct>, DiabetesAge <int>, 
## # HealthGen <fct>, DaysPhysHlthBad <int>, 
## # DaysMentHlthBad <int>, LittleInterest <fct>, 
## # Depressed <fct>, nPregnancies <int>, nBabies <int>, 
## # Age1stBaby <int>, SleepHrsNight <int>, 
## # SleepTrouble <fct>, PhysActive <fct>, 
## # PhysActiveDays <int>, TVHrsDay <fct>, CompHrsDay <fct>, 
## # TVHrsDayChild <int>, CompHrsDayChild <int>, 
## # Alcohol12PlusYr <fct>, AlcoholDay <int>, 
## # AlcoholYear <int>, SmokeNow <fct>, Smoke100 <fct>, 
## # Smoke100n <fct>, SmokeAge <int>, Marijuana <fct>, 
## # AgeFirstMarij <int>, RegularMarij <fct>, 
## # AgeRegMarij <int>, HardDrugs <fct>, SexEver <fct>, 
## # SexAge <int>, SexNumPartnLife <int>, 
## # SexNumPartYear <int>, SameSex <fct>, 
## # SexOrientation <fct>, PregnantNow <fct>, orig.id <chr> 

Notice that some of the unit of observations are repeated. That is what happens 
when you resample. Now one resampling isn’t enough. So you want to resample 
many times so you can create a resampling distribution. 
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Figure 7.1: Resampling distribution 

## mean_mea sd_mea 
## 1 -2.177355 2.218221 
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Notice the sample mean from the resampling is very close to 0, so that means 
that the US BMI are not that different from the Australian BMI. There doesn’t 
seem to be enough evidence to show that the US BMI is different from the 
Australian BMI. One note, the sample size used here was 10 so you could see 
the sample, but really the sample size should be more than 100 for this method 
to be valid. 

So this is one way to answer the question about if there is evidence to show 
a population mean is different from a value. This is actually the method that 
Ronald Fisher developed when he create all the foundation work that he did in 
statistics in the early 1900s. However, at the time, computers didn’t exist, so 
taking 100 reampling samples was not possible at that time. So other methods 
had to be developed that could be computed during that time. One method 
was developed by William (W.S) Gossett, a Chemist who worked for Guinness 
as their head brewer. Gossett developed a distribution called the Student’s 
T-distribution. His process was to use the sample standard deviation, s, as 

𝑥−𝜇an approximation of 𝜎. This means the test statistic is now 𝑡 = √𝑠
𝑛 
. This 

new test statistic is actually distributed as a Student’s t-distribution, developed 
by W.S. Gossett. There are some assumptions that must be made for this 
formula to be a Student’s t-distribution. These are outlined in the following 
theorem. Note: the t-distribution is called the Student’s t-distribution because 
that is the name he published under because he couldn’t publish under his own 
name due to employer not wanting him to publish under his own name. His 
employer by the way was Guinness and they didn’t want competitors knowing 
they had a chemist/statistician working for them. It is not called the Student’s 
t-distribution because it is only used by students. 

Theorem: If the following assumptions are met 

a. A random sample of size n is taken. 

b. The distribution of the random variable is normal. 

Then the distribution of is a Student’s t-distribution with 𝑛 − 1 degrees of 
freedom. 

Explanation of degrees of freedom: Recall the formula for sample standard 

deviation is √ ∑ 𝑥− 𝑥̄
𝑛−1 . Notice the denominator is 𝑛 − 1. This is the same as the 

degrees of freedom. This is no accident. The reason the denominator and the 
degrees of freedom are both comes from how the standard deviation is calculated. 
First you take each data value and subtract 𝑥.̄ If you add up all of these new 
values, you will get 0. This must happen. Since it must happen, the first 
data values you have “freedom of choice”, but the nth data value, you have no 
freedom to choose. Hence, you have 𝑛 − 1 degrees of freedom. Another way to 
think about it is that if you five people and five chairs, the first four people have 
a choice of where they are sitting, but the last person does not. They have no 
freedom of where to sit. Only 𝑛 − 1 people have freedom of choice. 
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The Student’s t-distribution is a bell-shape that is more spread out than the nor-
mal distribution. There are many t-distributions, one for each different degree 
of freedom. 

(Figure 7.2) is of the normal distribution and the Student’s t-distribution for df 
= 1, df = 3, df=8, df=30. 
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Figure 7.2: Typical Student t-Distributions 

As the degrees of freedom increases, the student’s t-distribution looks more like 
the normal distribution. 

To find probabilities for the t-distribution, again technology can do this for you. 
There are many technologies out there that you can use. 

Hypothesis Test for One Population Mean (t-Test) 

1. State the random variable and the parameter in words. 

x = random variable 

𝜇 = mean of random variable 

2. State the null and alternative hypotheses and the level of significance 

𝐻𝑜 ∶ 𝜇 = 𝜇𝑜 , where 𝜇𝑜 is the known mean 

𝐻𝑎 ∶ 𝜇 ≠ 𝜇𝑜, you can also use < or >, but ≠ is the more modern one to use. 

Also, state your 𝛼 level here. 
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3. State and check the assumptions for a hypothesis test 

a. A random sample of size n is taken. 

b. The population of the random variable is normally distributed. The t-test 
is fairly robust to the condition if the sample size is large. This means 
that if this condition isn’t met, but your sample size is quite large, then 
the results of the t-test are valid. 

c. The population standard deviation, 𝜎, is unknown. 

4. Find the sample statistic, test statistic, and p-value 

On R Studio, the command is 
t.test(~variable, data=data frame, mu=what Ho says) 

5. Conclusion 

This is where you write reject or fail to reject 𝐻𝑜. The rule is: if the p-value 
< 𝛼 , then reject 𝐻𝑜. If the p-value ≥ 𝛼, then fail to reject 𝐻𝑜 

6. Interpretation 

This is where you interpret in real world terms the conclusion to the test. The 
conclusion for a hypothesis test is that you either have enough evidence to 
support 𝐻𝑎, or you do not have enough evidence to support 𝐻𝑎. 

How to check the assumptions of t-test: 

In order for the t-test to be valid, the assumptions of the test must be true. 
Whenever you run a t-test, you must make sure the assumptions are true. You 
need to check them. Here is how you do this: 

1. For the condition that the sample is a random sample, describe how you 
took the sample. Make sure your sampling technique is random. 

2. For the condition that population of the random variable is normal, re-
member the process of assessing normality from chapter 6. 

Note: if the assumptions behind this test are not valid, then the conclusions 
you make from the test are not valid. If you do not have a random sample, 
that is your fault. Make sure the sample you take is as random as you can 
make it following sampling techniques from chapter 1. If the population of the 
random variable is not normal, then take a larger sample. If you cannot afford 
to do that, or if it is not logistically possible, then you do different tests called 
non-parametric tests or you can try resampling. There is an entire course on 
non-parametric tests, and they will not be discussed in this book. 
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7.3.2 Example: Test of the Mean Using One Sample T-
test 

A random sample of 50 body mass index (BMI) were taken from the NHANES 
Data frame The mean BMI of Australians is 27.2 𝑘𝑔/𝑚2. Is there evidence that 
Americans have a different BMI from people in Australia. Test at the 5% level. 

Table #7.3.2: BMI of Americans 

sample_NHANES_50<-
sample_n(NHANES, size=50) 

head(sample_NHANES_50) 

## # A tibble: 6 x 76 
## ID SurveyYr Gender Age AgeDecade AgeMonths Race1 
## <int> <fct> <fct> <int> <fct> <int> <fct> 
## 1 67529 2011_12 female 11 " 10-19" NA White 
## 2 57517 2009_10 male 2 " 0-9" 29 White 
## 3 57586 2009_10 male 37 " 30-39" 453 White 
## 4 61234 2009_10 male 35 " 30-39" 429 White 
## 5 58730 2009_10 male 38 " 30-39" 467 Other 
## 6 55651 2009_10 female 17 " 10-19" 210 Other 
## # ... with 69 more variables: Race3 <fct>, Education <fct>, 
## # MaritalStatus <fct>, HHIncome <fct>, HHIncomeMid <int>, 
## # Poverty <dbl>, HomeRooms <int>, HomeOwn <fct>, 
## # Work <fct>, Weight <dbl>, Length <dbl>, HeadCirc <dbl>, 
## # Height <dbl>, BMI <dbl>, BMICatUnder20yrs <fct>, 
## # BMI_WHO <fct>, Pulse <int>, BPSysAve <int>, 
## # BPDiaAve <int>, BPSys1 <int>, BPDia1 <int>, 
## # BPSys2 <int>, BPDia2 <int>, BPSys3 <int>, BPDia3 <int>, 
## # Testosterone <dbl>, DirectChol <dbl>, TotChol <dbl>, 
## # UrineVol1 <int>, UrineFlow1 <dbl>, UrineVol2 <int>, 
## # UrineFlow2 <dbl>, Diabetes <fct>, DiabetesAge <int>, 
## # HealthGen <fct>, DaysPhysHlthBad <int>, 
## # DaysMentHlthBad <int>, LittleInterest <fct>, 
## # Depressed <fct>, nPregnancies <int>, nBabies <int>, 
## # Age1stBaby <int>, SleepHrsNight <int>, 
## # SleepTrouble <fct>, PhysActive <fct>, 
## # PhysActiveDays <int>, TVHrsDay <fct>, CompHrsDay <fct>, 
## # TVHrsDayChild <int>, CompHrsDayChild <int>, 
## # Alcohol12PlusYr <fct>, AlcoholDay <int>, 
## # AlcoholYear <int>, SmokeNow <fct>, Smoke100 <fct>, 
## # Smoke100n <fct>, SmokeAge <int>, Marijuana <fct>, 
## # AgeFirstMarij <int>, RegularMarij <fct>, 
## # AgeRegMarij <int>, HardDrugs <fct>, SexEver <fct>, 
## # SexAge <int>, SexNumPartnLife <int>, 
## # SexNumPartYear <int>, SameSex <fct>, 



241 7.3. ONE-SAMPLE TEST FOR THE MEAN 

## # SexOrientation <fct>, PregnantNow <fct> 

Solution: 

1. State the random variable and the parameter in words. 

x = BMI of an American 

𝜇 = mean BMI of Americans 

2. State the null and alternative hypotheses and the level of significance 

𝐻𝑜 ∶ 𝜇 = 27.2 

𝐻𝑎 ∶ 𝜇 ≠ 27.2 

level of significance 𝛼 = 0.05 

3. State and check the assumptions for a hypothesis test 

a. A random sample of 50 BMI levels was taken. Check: A random sample 
was taken from the NHANES data frame using R Studio 

b. The population of BMI levels is normally distributed. Check: 
gf_density(~BMI, data=sample_NHANES_50) 
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Figure 7.3: Density Plot of BMI from NHANES sample 
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gf_qq(~BMI, data=sample_NHANES_50) 
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Figure 7.4: Normal Quantile Plot of BMI from NHANES sample 

The density plot looks somewhat skewed right and the normal quantile plot 
looks somewhat linear. However, there doesn’t seem to be strong evidence that 
the sample comes from a population that is normally distributed. However, 
since the sample is moderate to large, the t-test is robust to this assumption 
not being met. So the results of the test are probably valid. 

4. Find the sample statistic, test statistic, and p-value 

On R Studio, the command would be 

t.test(~BMI, data= sample_NHANES_50, mu=27.2) 

## 
## One Sample t-test 
## 
## data: BMI 
## t = 0.88982, df = 47, p-value = 0.3781 
## alternative hypothesis: true mean is not equal to 27.2 
## 95 percent confidence interval: 
## 25.70303 31.07156 
## sample estimates: 
## mean of x 
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## 28.38729 

The test statistic is the t in the output, the sample statistic is the mean of x in 
the output, and the p-value is the p-value is the output. 

5. Conclusion 

Since the p-value is not less than 5%, then fail to reject 𝐻𝑜. 

6. Interpretation 

There is not enough evidence to support that Americans have a different BMI 
from Australians. 

Note: this is the same conclusion that was found when using resampling. So 
the two method could give similar conclusions. 

7.3.3 Example: Test of the Mean Using One Sample T-
test 

In 2011, the average life expectancy for a woman in Europe was 79.8 years. 
The data in table #7.3.3 are the life expectancies for all people in European 
countries (”WHO life expectancy,” 2013). Table #7.3.4 filtered the data frame 
for just males and just year 2000. The year 2000 was randomly chosen as the 
year to use. Do the data indicate that men’s life expectancy is different from 
women’s? Test at the 1% level. 

Table #7.3.3: Life Expectancies for European Countries 

Expectancy<-read.csv( 
"https://krkozak.github.io/MAT160/Life_expectancy_Europe.csv") 

head(Expectancy) 

## year WHO_region country sex expect 
## 1 1990 Europe Albania Male 67 
## 2 1990 Europe Albania Female 71 
## 3 1990 Europe Albania Both sexes 69 
## 4 2000 Europe Albania Male 68 
## 5 2000 Europe Albania Female 73 
## 6 2000 Europe Albania Both sexes 71 

Table #7.3.4: Life Expectancies of males in European Countries in 
2000 

Expectancy_male<-
Expectancy%>% 
filter(sex=="Male", year=="2000") 

head(Expectancy_male) 

## year WHO_region country sex expect 
## 1 2000 Europe Albania Male 68 

https://krkozak.github.io/MAT160/Life_expectancy_Europe.csv
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## 2 2000 Europe Andorra Male 76 
## 3 2000 Europe Armenia Male 68 
## 4 2000 Europe Austria Male 75 
## 5 2000 Europe Azerbaijan Male 64 
## 6 2000 Europe Belarus Male 63 

Code book for data frame Expectancy 

Description This data extract has been generated by the Global Health Obser-
vatory of the World Health Organization. The data was extracted on 2013-09-19 
13:10:20.0. 

This data frame contains the following columns: 

year: year for life expectancies 

WHO_region: World Health Organizations designation for the location of the 
country 

country: country where the epectancies are from 

sex: sex of the group that expectancies are calculated for 

expect: average life expectancies of the different groups of the different countries. 

Source http://apps.who.int/gho/athena/data/download.xsl?format= 
xml&target=GHO/WHOSIS_000001&profile=excel&filter=COUNTRY:;SEX:;REGION:EUR 

References World Health Organization (WHO). 

Solution: 

1. State the random variable and the parameter in words. 

x = life expectancy for a European man 

𝜇 = mean life expectancy for European men 

2. State the null and alternative hypotheses and the level of significance 

𝐻𝑜 ∶ 𝜇 = 79.8 

𝐻𝑎 ∶ 𝜇 ≠ 79.8 

𝛼 = 0.01 

3. State and check the assumptions for a hypothesis test 

a. A random sample of 53 life expectancies of European men in 2000 was 
taken. Check: The data is actually all of the life expectancies for every 
country that is considered part of Europe by the World Health Organiza-
tion in the year 2000. Since the year 2000 was picked at random, then the 
sample is a random sample. 

b. The distribution of life expectancies of European men in 2000 is normally 
distributed. Check: 

http://apps.who.int/gho/athena/data/download.xsl?format=xml&target=GHO/WHOSIS_000001&profile=excel&filter=COUNTRY
http://apps.who.int/gho/athena/data/download.xsl?format=xml&target=GHO/WHOSIS_000001&profile=excel&filter=COUNTRY
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gf_density(~expect, data=Expectancy_male) 
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Figure 7.5: Density Plot of Life Expectancies of Males in Europe in 2000 

gf_qq(~expect, data=Expectancy_male) 

This sample does not appear to come from a population that is normally dis-
tributed. This sample is moderate to large, so it is good that the t-test is 
robust. 

4. Find the sample statistic, test statistic, and p-value 

On R Studio, the command is 
t.test(~expect, data=Expectancy_male, mu=79.8) 

## 
## One Sample t-test 
## 
## data: expect 
## t = -11.733, df = 52, p-value = 3.145e-16 
## alternative hypothesis: true mean is not equal to 79.8 
## 95 percent confidence interval: 
## 69.11930 72.23919 
## sample estimates: 
## mean of x 
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Figure 7.6: Normal Quantile Plot of Life Expectancies of Males in Europe in 
2000 

## 70.67925 

Sample statistic is 70.68 years, test statistic is t = -11.733, and p-value = 
3.14𝑋10−16. 

5. Conclusion 

Since the p-value is less than 1%, then reject 𝐻𝑜. 

6. Interpretation 

There is enough evidence to support that the mean life expectancy for European 
men is different than the mean life expectancy for European women of 79.8 years. 

Note: if you want to conduct a hypothesis test with 𝐻𝑎 ∶ 𝜇 > 𝜇𝑜, then the R 
Studio command would be 

t.test(~variable, data=Data Frame, mu=, alternative="greater") 

If you want to conduct a hypothesis test with 𝐻𝑎 ∶ 𝜇 < 𝜇𝑜, then the R Studio 
command would be 

t.test(~variable, data=Data Frame, mu=, alternative="less") 
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7.3.4 Homework 

In each problem show all steps of the hypothesis test. If some of the 
assumptions are not met, note that the results of the test may not be 
correct and then continue the process of the hypothesis test. 

1. The Kyoto Protocol was signed in 1997, and required countries to start re-
ducing their carbon emissions. The protocol became enforceable in Febru-
ary 2005. In 2004, the mean CO2 emission was 4.87 metric tons per 
capita. Table 7.3.5 contains a random sample of CO2 emissions in 2010 
(CO2 emissions (metric tons per capita), 2018). Is there enough evidence 
to show that the mean CO2 emission is different in 2010 than in 2004? 
Test at the 1% level. 

Table #7.3.5: CO2 Emissions (in metric tons per capita) in 2010 

Emission <- read.csv( 
"https://krkozak.github.io/MAT160/CO2_emission.csv") 

head(Emission) 

## country y1960 y1961 y1962 y1963 
## 1 Aruba NA NA NA NA 
## 2 Afghanistan 0.04605671 0.05358884 0.07372083 0.07416072 
## 3 Angola 0.10083534 0.08220380 0.21053148 0.20273730 
## 4 Albania 1.25819493 1.37418605 1.43995596 1.18168114 
## 5 Andorra NA NA NA NA 
## 6 Arab World 0.64573587 0.68746538 0.76357363 0.87823769 
## y1964 y1965 y1966 y1967 y1968 
## 1 NA NA NA NA NA 
## 2 0.08617361 0.1012849 0.1073989 0.1234095 0.1151425 
## 3 0.21356035 0.2058909 0.2689414 0.1721017 0.2897181 
## 4 1.11174196 1.1660990 1.3330555 1.3637463 1.5195513 
## 5 NA NA NA NA NA 
## 6 1.00305335 1.1705403 1.2781736 1.3374436 1.5522420 
## y1969 y1970 y1971 y1972 y1973 
## 1 NA NA NA NA NA 
## 2 0.08650986 0.1496515 0.1652083 0.1299956 0.1353666 
## 3 0.48023402 0.6082236 0.5645482 0.7212460 0.7512399 
## 4 1.55896757 1.7532399 1.9894979 2.5159144 2.3038974 
## 5 NA NA NA NA NA 
## 6 1.79866893 1.8103078 2.0037220 2.1208746 2.4095329 
## y1974 y1975 y1976 y1977 y1978 
## 1 NA NA NA NA NA 
## 2 0.1545032 0.1676124 0.1535579 0.1815222 0.1618942 
## 3 0.7207764 0.6285689 0.4513535 0.4692212 0.6947369 
## 4 1.8490067 1.9106336 2.0135846 2.2758764 2.5306250 
## 5 NA NA NA NA NA 
## 6 2.2858907 2.1967827 2.5843424 2.6487624 2.7623331 

https://krkozak.github.io/MAT160/CO2_emission.csv
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## y1979 y1980 y1981 y1982 y1983 
## 1 NA NA NA NA NA 
## 2 0.1670664 0.1317829 0.1506147 0.1631039 0.2012243 
## 3 0.6830629 0.6409664 0.6111351 0.5193546 0.5513486 
## 4 2.8982085 1.9350583 2.6930239 2.6248568 2.6832399 
## 5 NA NA NA NA NA 
## 6 2.8636143 3.0928915 2.9302350 2.7231544 2.8165670 
## y1984 y1985 y1986 y1987 y1988 
## 1 NA NA 2.8683194 7.2351980 10.0261792 
## 2 0.2319613 0.2939569 0.2677719 0.2692296 0.2468233 
## 3 0.5209829 0.4719028 0.4516189 0.5440851 0.4635083 
## 4 2.6942914 2.6580154 2.6653562 2.4140608 2.3315985 
## 5 NA NA NA NA NA 
## 6 2.9813539 3.0618504 3.2844996 3.1978064 3.2950428 
## y1989 y1990 y1991 y1992 y1993 
## 1 10.6347326 26.3745032 26.0461298 21.44255880 22.00078616 
## 2 0.2338822 0.2106434 0.1833636 0.09619658 0.08508711 
## 3 0.4372955 0.4317436 0.4155308 0.41052293 0.44172110 
## 4 2.7832431 1.6781067 1.3122126 0.77472491 0.72379029 
## 5 NA 7.4673357 7.1824566 6.91205339 6.73605485 
## 6 3.2566742 3.0169588 3.2366449 3.41548491 3.66944563 
## y1994 y1995 y1996 y1997 
## 1 21.03624511 20.77193616 20.31835337 20.42681771 
## 2 0.07580649 0.06863986 0.06243461 0.05664234 
## 3 0.28811907 0.78703255 0.72623346 0.49636125 
## 4 0.60020371 0.65453713 0.63662531 0.49036506 
## 5 6.49420042 6.66205168 7.06507147 7.23971272 
## 6 3.67435821 3.42400952 3.32830368 3.14553220 
## y1998 y1999 y2000 y2001 
## 1 20.58766915 20.31156677 26.19487524 25.93402441 
## 2 0.05276322 0.04072254 0.03723478 0.03784614 
## 3 0.47581516 0.57708291 0.58196150 0.57431605 
## 4 0.56027144 0.96016441 0.97817468 1.05330418 
## 5 7.66078389 7.97545440 8.01928429 7.78695000 
## 6 3.34996719 3.32834106 3.70385708 3.60795615 
## y2002 y2003 y2004 y2005 
## 1 25.67116178 26.42045209 26.51729342 27.20070778 
## 2 0.04737732 0.05048134 0.03841004 0.05174397 
## 3 0.72295888 0.50022540 1.00187812 0.98573636 
## 4 1.22954071 1.41269720 1.37621273 1.41249821 
## 5 7.59061514 7.31576071 7.35862494 7.29987194 
## 6 3.60461275 3.79646741 4.06856241 4.18567731 
## y2006 y2007 y2008 y2009 y2010 
## 1 26.94772597 27.89502282 26.2295527 25.9153221 24.6705289 
## 2 0.06242753 0.08389281 0.1517209 0.2383985 0.2899876 
## 3 1.10501903 1.20313400 1.1850005 1.2344251 1.2440915 
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## 4 1.30257637 1.32233486 1.4843111 1.4956002 1.5785736 
## 5 6.74605213 6.51938706 6.4278100 6.1215799 6.1225947 
## 6 4.28571918 4.11714755 4.4089483 4.5620151 4.6368134 
## y2011 y2012 y2013 y2014 y2015 y2016 
## 1 24.5075162 13.1577223 8.353561 8.4100642 NA NA 
## 2 0.4064242 0.3451488 0.310341 0.2939464 NA NA 
## 3 1.2526808 1.3302186 1.253776 1.2903068 NA NA 
## 4 1.8037147 1.6929083 1.749211 1.9787633 NA NA 
## 5 5.8674102 5.9168840 5.901775 5.8329062 NA NA 
## 6 4.5594617 4.8377796 4.674925 4.8869875 NA NA 
## y2017 y2018 
## 1 NA NA 
## 2 NA NA 
## 3 NA NA 
## 4 NA NA 
## 5 NA NA 
## 6 NA NA 

Code book for data frame Emission 

Description Carbon dioxide emissions are those stemming from the burning 
of fossil fuels and the manufacture of cement. They include carbon dioxide 
produced during consumption of solid, liquid, and gas fuels and gas flaring. 

This data frame contains the following columns: 

country: country around the world 

y1960-y2018: weighted averages of CO2 emission for the years 1960 through 
2018 in metric tons per capita 

Source CO2 emissions (metric tons per capita). (n.d.). Retrieved July 18, 2019, 
from https://data.worldbank.org/indicator/EN.ATM.CO2E.PC 

References Carbon Dioxide Information Analysis Center, Environmental Sci-
ences Division, Oak Ridge National Laboratory, Tennessee, United States. 

2. The amount of sugar in a Krispy Kream glazed donut is 10 g. Many people 
feel that cereal is a healthier alternative for children over glazed donuts. 
Table #7.3.6 contains the amount of sugar in a sample of cereal that is 
geared towards children (breakfast cereal, 2019). Is there enough evidence 
to show that the mean amount of sugar in children’s cereal is different 
than in a glazed donut? Test at the 5% level. 

Table #7.3.6: Nutrition Amounts in Cereal 
Sugar <- read.csv( 
"https://krkozak.github.io/MAT160/cereal.csv") 

head(Sugar) 

## name manf age type 

https://data.worldbank.org/indicator/EN.ATM.CO2E.PC
https://krkozak.github.io/MAT160/cereal.csv
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## 1 100%_Bran Nabisco adult cold 
## 2 100%_Natural_Bran Quaker_Oats adult cold 
## 3 All-Bran Kelloggs adult cold 
## 4 All-Bran_with_Extra_Fiber Kelloggs adult cold 
## 5 Almond_Delight Ralston_Purina adult cold 
## 6 Apple_Cinnamon_Cheerios General_Mills child cold 
## colories protein fat sodium fiber carb sugar shelf 
## 1 70 4 1 130 10.0 5.0 6 3 
## 2 120 3 5 15 2.0 8.0 8 3 
## 3 70 4 1 260 9.0 7.0 5 3 
## 4 50 4 0 140 14.0 8.0 0 3 
## 5 110 2 2 200 1.0 14.0 8 3 
## 6 110 2 2 180 1.5 10.5 10 1 
## potassium vit weight serving 
## 1 280 25 1 0.33 
## 2 135 0 1 -1.00 
## 3 320 25 1 0.33 
## 4 330 25 1 0.50 
## 5 -1 25 1 0.75 
## 6 70 25 1 0.75 

Code book for data frame Sugar 

Description Nutritional information about cereals. 

This data frame contains the following columns: 

name: the cereal brand 

manf: manufacturer 

age: whether the cereal is geared towards children or adults 

type: whether the cereal is considered a hot or cold cereal 

calories: the number of calories in the cereal (number) 

protein: the amount of protein in a serving of the cereal (g) 

fat: the amount of fat a serving of the cereal (g) 

sodium: the amount of sodium in a serving of the cereal (mg) 

fiber: the amount of fiber in a serving of the cereal (g) 

carb: the amount of complex carbohydrates in a serving of the cereal (g) 

sugars: the amount of sugar in a serving of the cereal (g) 

display shelf: what shelf the cereal is on counting from the floor 

potassium: the amount of potassium in a serving of the cereal (mg) 
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vit: the amount of vitamins and minerals in a serving of the cereal (0, 25, or 
100) 

weight: weight in ounces of one serving 

serving: cups per serving 

Source (n.d.). Retrieved July 18, 2019, from https://www.idvbook.com/ 
teaching-aid/data-sets/the-breakfast-cereal-data-set/ The Best Kids’ Cereal. 
(n.d.). Retrieved July 18, 2019, from https://www.ranker.com/list/best-kids-
cereal/ranker-food 

References Interactive Data Visualization Foundations, Techniques, Applica-
tions (Matthew Ward | Georges Grinstein | Daniel Keim) 

A new data frame will need to be created of just cereal for children. To create 
that use the following command in R Studio 

Table #7.3.7: Nutrition Amounts in Children’s Cereal 
Sugar_children<-
Sugar%>% 

filter(age=="child") 
head(Sugar_children) 

## name manf age type 
## 1 Apple_Cinnamon_Cheerios General_Mills child cold 
## 2 Apple_Jacks Kelloggs child cold 
## 3 Bran_Chex Ralston_Purina child cold 
## 4 Cap'n'Crunch Quaker_Oats child cold 
## 5 Cheerios General_Mills child cold 
## 6 Cinnamon_Toast_Crunch General_Mills child cold 
## colories protein fat sodium fiber carb sugar shelf 
## 1 110 2 2 180 1.5 10.5 10 1 
## 2 110 2 0 125 1.0 11.0 14 2 
## 3 90 2 1 200 4.0 15.0 6 1 
## 4 120 1 2 220 0.0 12.0 12 2 
## 5 110 6 2 290 2.0 17.0 1 1 
## 6 120 1 3 210 0.0 13.0 9 2 
## potassium vit weight serving 
## 1 70 25 1 0.75 
## 2 30 25 1 1.00 
## 3 125 25 1 0.67 
## 4 35 25 1 0.75 
## 5 105 25 1 1.25 
## 6 45 25 1 0.75 

3. The FDA regulates that fish that is consumed is allowed to contain 1.0 
mg/kg of mercury. In Florida, bass fish were collected in 53 different lakes 
to measure the health of the lakes. The data frame of measurements from 

https://www.idvbook.com/teaching-aid/data-sets/the-breakfast-cereal-data-set/
https://www.idvbook.com/teaching-aid/data-sets/the-breakfast-cereal-data-set/
https://www.ranker.com/list/best-kids-cereal/ranker-food
https://www.ranker.com/list/best-kids-cereal/ranker-food
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Florida lakes is in table #7.3.8 (NISER 081107 ID Data, 2019). Do the 
data provide enough evidence to show that the fish in Florida lakes has 
different amounts of mercury than the allowable amount? Test at the 10% 
level. 

Table #7.3.8: Health of Florida lake Fish 

Mercury<- read.csv( 
"https://krkozak.github.io/MAT160/mercury.csv") 

head(Mercury) 

## ID lake alkalinity ph calcium chlorophyll 
## 1 1 Alligator 5.9 6.1 3.0 0.7 
## 2 2 Annie 3.5 5.1 1.9 3.2 
## 3 3 Apopka 116.0 9.1 44.1 128.3 
## 4 4 Blue_Cypress 39.4 6.9 16.4 3.5 
## 5 5 Brick 2.5 4.6 2.9 1.8 
## 6 6 Bryant 19.6 7.3 4.5 44.1 
## mercury no.samples min max X3_yr_standmercury age_data 
## 1 1.23 5 0.85 1.43 1.53 1 
## 2 1.33 7 0.92 1.90 1.33 0 
## 3 0.04 6 0.04 0.06 0.04 0 
## 4 0.44 12 0.13 0.84 0.44 0 
## 5 1.20 12 0.69 1.50 1.33 1 
## 6 0.27 14 0.04 0.48 0.25 1 

Code book for data frame Mercury 

Description Largemouth bass were studied in 53 different Florida lakes to 
examine the factors that influence the level of mercury contamination. Water 
samples were collected from the surface of the middle of each lake in August 1990 
and then again in March 1991. The pH level, the amount of chlorophyll, calcium, 
and alkalinity were measured in each sample. The average of the August and 
March values were used in the analysis. Next, a sample of fish was taken from 
each lake with sample sizes ranging from 4 to 44 fish. The age of each fish and 
mercury concentration in the muscle tissue was measured. (Note: Since fish 
absorb mercury over time, older fish will tend to have higher concentrations). 
Thus, to make a fair comparison of the fish in different lakes, the investigators 
used a regression estimate of the expected mercury concentration in a three year 
old fish as the standardized value for each lake. Finally, in 10 of the 53 lakes, 
the age of the individual fish could not be determined and the average mercury 
concentration of the sampled fish was used instead of the standardized value. ( 
Reference: Lange, Royals, & Connor. (1993)) 

This data frame contains the following columns: 

ID: ID number 

Lake: Name of lake 

https://krkozak.github.io/MAT160/mercury.csv
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alkalinity: Alkalinity (mg/L as Calcium Carbonate) 

pH: pH 

calcium: calcium (mg/l) 

chlorophyll: chlorophyll (mg/l) 

mercury: Average mercury concentration (parts per million) in the muscle tissue 
of the fish sampled from that lake 

no.samples: How many fish were sampled from the lake 

min: Minimum mercury concentration among the sampled fish 

max: Maximum mercury concentration among the sampled fish 

X3_yr_Standard_mercury: Regression estimate of the mercury concentration 
in a 3 year old fish from the lake (or = Avg Mercury when age data was not 
available) 

age_data: Indicator of the availability of age data on fish sampled 

Source Lange TL, Royals HE, Connor LL (1993) Influence of water chemistry 
on mercury concentration in largemouth bass from Florida lakes. Trans Am 
Fish Soc 122:74-84. Michael K. Saiki, Darell G. Slotton, Thomas W. May, 
Shaun M. Ayers, and Charles N. Alpers (2000) Summary of Total Mercury 
Concentrations in Fillets of Selected Sport Fishes Collected during 2000–2003 
from Lake Natoma, Sacramento County, California (Raw data is included in 
appendix), U.S. Geological Survey Data Series 103, 1-21. NISER 081107 ID 
Data. (n.d.). Retrieved July 18, 2019, from http://wiki.stat.ucla.edu/socr/ 
index.php/NISER_081107_ID_Data 

References NISER 081107 ID Data 

4. The data frame Pulse (Table 7.3.9) contains various variables about a 
person including their pulse rates before the subject exercised and after 
the subject ran in place for one minute. The mean pulse rate after running 
for 1 minute of females who do not drink is 97 beats per minute. Do the 
data show that the mean pulse rate of females who do drink alcohol is 
higher than the mean pulse rate of females who do not drink? Test at the 
5% level. 

Table #7.3.9: Pulse Rates Pulse Rates of people Before and After 
Exercise 

Pulse<-read.csv( 
"https://krkozak.github.io/MAT160/pulse.csv") 

head(Pulse) 

## height weight age gender smokes alcohol exercise ran 
## 1 170 68 22 male yes yes moderate sat 
## 2 182 75 26 male yes yes moderate sat 

http://wiki.stat.ucla.edu/socr/index.php/NISER_081107_ID_Data
http://wiki.stat.ucla.edu/socr/index.php/NISER_081107_ID_Data
https://krkozak.github.io/MAT160/pulse.csv
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## 3 180 85 19 male yes yes moderate ran 
## 4 182 85 20 male yes yes low sat 
## 5 167 70 22 male yes yes low sat 
## 6 178 86 21 male yes yes low sat 
## pulse_before pulse_after year 
## 1 70 71 93 
## 2 80 76 93 
## 3 68 125 95 
## 4 70 68 95 
## 5 92 84 96 
## 6 76 80 98 

Code book for data frame Pulse, see homework problem 3.2.5 in section 
3.2 

Create a data frame that contains only females who drink alcohol. Then test 
the pulse after for woman who do drink alcohol to the known value for females 
who do not drink alcohol. To create a new data frame with just females who 
drink alcohol use the following command, where the new name is Females: 

Table #7.3.10: Pulse Rates Pulse Rates of people Before and After 
Exercise 

Females<-
Pulse%>% 

filter(gender=="female", alcohol=="yes") 
head(Females) 

## height weight age gender smokes alcohol exercise ran 
## 1 165 60 19 female yes yes low ran 
## 2 163 47 23 female yes yes low ran 
## 3 173 57 18 female no yes moderate sat 
## 4 179 58 19 female no yes moderate ran 
## 5 167 62 18 female no yes high ran 
## 6 173 64 18 female no yes low sat 
## pulse_before pulse_after year 
## 1 88 120 98 
## 2 71 125 98 
## 3 86 88 93 
## 4 82 150 93 
## 5 96 176 93 
## 6 90 88 93 

5. The economic dynamism is an index of productive growth in dollars. Eco-
nomic data for many countries are in table #7.3.11 (SOCR Data 2008 
World CountriesRankings, 2019). Countries that are considered high-
income have a mean economic dynamism of 60.29. 

Table #7.3.11: Economic Data for Countries 
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Economics <- read.csv( 
"https://krkozak.github.io/MAT160/Economics_country.csv") 

head(Economics) 

## Id incGroup key name popGroup region key2 
## 1 0 Low al Albania Small Southern_Europe popS 
## 2 1 Middle dz Algeria Medium North_Africa popM 
## 3 2 Middle ar Argentina Medium South_America popM 
## 4 3 High au Australia Medium Australia popM 
## 5 4 High at Austria Small Central_Europe popS 
## 6 5 Low az Azerbaijan Small central_Asia popS 
## ED Edu HI QOL PE OA Relig 
## 1 34.0862 81.0164 71.0244 67.9240 58.6742 57 39 
## 2 25.8057 74.8027 66.1951 60.9347 32.6054 85 95 
## 3 37.4511 69.8825 78.2683 68.1559 68.6647 46 66 
## 4 71.4888 91.4802 95.1707 90.5729 90.9629 4 65 
## 5 53.9431 90.4578 90.3415 87.5630 91.2073 18 20 
## 6 53.6457 68.9880 58.9512 68.9572 40.0390 69 50 

Code book for data frame Economics 

Description These data represent commonly accepted measures for raking 
Countries on variety of factors which affect the country’s internal and exter-
nal international perception of the country’s rank relative the to rest of the 
World. 

This data frame contains the following columns: 

id: Unique country identifier 

incGroup: Income group: Low: GNI per capita < $3,946, Middle: $3,946 < 
GNI per capita < $12,195, High: GNI per capita > $12,196 

key: unique 2-letter country code 

name: Country Name 

popGroup: Population Group: Small: Population < 20 million, Medium: 20 
million < Population < 50 million, Large: Population > 50 million 

region: Relative geographic position of the Country 

key2: Country Group Classification Label: world: All countries, g7: G7, g20: 
G20, latin: Latin America & Caribbean, eu: European Union, centasia: Europe 
& Central Asia, pacasia: East Asia & Pacific, asean: Asean, sasia: South Asia, 
mideast: Middle East & North Africa, africa: Sub-Saharan Africa, bric: Brazil, 
Russia, India and China (BRIC) 

ED: Economic Dynamism: Index of Productive growth in dollars (GDP/capita 
at PPP, Avg of GDP/capita growth rate over last ten years, GDP/capita growth 

https://krkozak.github.io/MAT160/Economics_country.csv
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rate over next ten years, Economic Dynamism: Manufacturing percent of GDP, 
Services percent of GDP percent (100=best, 0=worst). 

Edu: Education/Literacy Rate (percent of population able to read and write at 
a specified age) 

HI: Health Index: The average number of years a person lives in full health, 
taking into account years lived in less than full health 

QOL: Quality of Life: Population percent living on < $2/day 

PE: Political Environment: Freedom house rating of political participation 
(qualitative assessment of voter participation/turn-out for national elections, 
citizens engagement with politics) 

OA: Overall country ranking taking all measures into account. 

Relig: Religiosity of the Country as a percent (%) of the population. 

Source SOCR Data 2008 World CountriesRankings. (n.d.). Retrieved July 
19, 2019, from http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_2008_ 
World_CountriesRankings#SOCR_Data_-_Ranking_of_the_top_100_ 
Countries_based_on_Political.2C_Economic.2C_Health.2C_and_Quality-
of-Life_Factors 

References SOCR Data 2008 World CountriesRankings, Amazon Web-Services 
World’s Best Countries. 

Create a data frame that contains only middle income countries. Do the data 
show that the mean economic dynamism of middle-income countries is less than 
the mean for high-income countries? Test at the 5% level. To create a new data 
frame with just middle income countries use the following command, where the 
new name is Middle_economics: 

Table #7.3.12: Economic Data for Middle income Countries 

Middle_economics<-
Economics%>% 

filter(incGroup=="Middle") 
head(Middle_economics) 

## Id incGroup key name popGroup region key2 
## 1 1 Middle dz Algeria Medium North_Africa popM 
## 2 2 Middle ar Argentina Medium South_America popM 
## 3 7 Middle by Belarus Small central_Asia popS 
## 4 10 Middle bw Botswana Small Africa popS 
## 5 11 Middle br Brazil Large South_America popL 
## 6 12 Middle bg Bulgaria Small Southern_Europe popS 
## ED Edu HI QOL PE OA Relig 
## 1 25.8057 74.8027 66.1951 60.9347 32.6054 85 95 
## 2 37.4511 69.8825 78.2683 68.1559 68.6647 46 66 

http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_2008_World_CountriesRankings#SOCR_Data_-_Ranking_of_the_top_100_Countries_based_on_Political.2C_Economic.2C_Health.2C_and_Quality-of-Life_Factors
http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_2008_World_CountriesRankings#SOCR_Data_-_Ranking_of_the_top_100_Countries_based_on_Political.2C_Economic.2C_Health.2C_and_Quality-of-Life_Factors
http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_2008_World_CountriesRankings#SOCR_Data_-_Ranking_of_the_top_100_Countries_based_on_Political.2C_Economic.2C_Health.2C_and_Quality-of-Life_Factors
http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_2008_World_CountriesRankings#SOCR_Data_-_Ranking_of_the_top_100_Countries_based_on_Political.2C_Economic.2C_Health.2C_and_Quality-of-Life_Factors
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## 3 51.9150 86.6155 66.1951 74.1467 34.0501 56 34 
## 4 43.6952 73.4608 34.8049 50.0875 72.6833 80 80 
## 5 47.8506 71.3735 71.0244 62.4238 67.4131 48 87 
## 6 43.7178 82.2277 75.8537 73.1197 73.1686 38 50 

6. In 1999, the average percentage of women who received prenatal care 
per country is 80.1%. Table #7.3.13 contains the percentage of woman 
receiving prenatal care in a sample of countries over several years. (births 
per woman), 2019). Do the data show that the average percentage of 
women receiving prenatal care in 2009 (p2009) is different than in 1999? 
Test at the 5% level. 

Table #7.3.13: Data of Prenatal Care versus Health Expenditure 

Fert_prenatal<-read.csv( 
"https://krkozak.github.io/MAT160/fertility_prenatal.csv") 

head(Fert_prenatal) 

## Country.Name Country.Code Region 
## 1 Angola AGO Sub-Saharan Africa 
## 2 Armenia ARM Europe & Central Asia 
## 3 Belize BLZ Latin America & Caribbean 
## 4 Cote d'Ivoire CIV Sub-Saharan Africa 
## 5 Ethiopia ETH Sub-Saharan Africa 
## 6 Guinea GIN Sub-Saharan Africa 
## IncomeGroup f1960 f1961 f1962 f1963 f1964 f1965 
## 1 Lower middle income 7.478 7.524 7.563 7.592 7.611 7.619 
## 2 Upper middle income 4.786 4.670 4.521 4.345 4.150 3.950 
## 3 Upper middle income 6.500 6.480 6.460 6.440 6.420 6.400 
## 4 Lower middle income 7.691 7.720 7.750 7.781 7.811 7.841 
## 5 Low income 6.880 6.877 6.875 6.872 6.867 6.864 
## 6 Low income 6.114 6.127 6.138 6.147 6.154 6.160 
## f1966 f1967 f1968 f1969 f1970 f1971 f1972 f1973 f1974 
## 1 7.618 7.613 7.608 7.604 7.601 7.603 7.606 7.611 7.614 
## 2 3.758 3.582 3.429 3.302 3.199 3.114 3.035 2.956 2.875 
## 3 6.379 6.358 6.337 6.316 6.299 6.288 6.284 6.285 6.287 
## 4 7.868 7.893 7.912 7.927 7.936 7.941 7.942 7.939 7.929 
## 5 6.867 6.880 6.903 6.937 6.978 7.020 7.060 7.094 7.121 
## 6 6.168 6.177 6.189 6.205 6.225 6.249 6.277 6.306 6.337 
## f1975 f1976 f1977 f1978 f1979 f1980 f1981 f1982 f1983 
## 1 7.615 7.609 7.594 7.571 7.540 7.504 7.469 7.438 7.413 
## 2 2.792 2.712 2.641 2.582 2.538 2.510 2.499 2.503 2.517 
## 3 6.278 6.250 6.195 6.109 5.992 5.849 5.684 5.510 5.336 
## 4 7.910 7.877 7.828 7.763 7.682 7.590 7.488 7.383 7.278 
## 5 7.143 7.167 7.195 7.230 7.271 7.316 7.360 7.397 7.424 
## 6 6.369 6.402 6.436 6.468 6.500 6.529 6.557 6.581 6.602 
## f1984 f1985 f1986 f1987 f1988 f1989 f1990 f1991 f1992 

https://krkozak.github.io/MAT160/fertility_prenatal.csv
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## 1 7.394 7.380 7.366 7.349 7.324 7.291 7.247 7.193 7.130 
## 2 2.538 2.559 2.578 2.591 2.592 2.578 2.544 2.484 2.400 
## 3 5.170 5.019 4.886 4.771 4.671 4.584 4.508 4.436 4.363 
## 4 7.176 7.078 6.984 6.892 6.801 6.710 6.622 6.536 6.454 
## 5 7.437 7.435 7.418 7.387 7.347 7.298 7.246 7.193 7.143 
## 6 6.619 6.631 6.637 6.637 6.631 6.618 6.598 6.570 6.535 
## f1993 f1994 f1995 f1996 f1997 f1998 f1999 f2000 f2001 
## 1 7.063 6.992 6.922 6.854 6.791 6.734 6.683 6.639 6.602 
## 2 2.297 2.179 2.056 1.938 1.832 1.747 1.685 1.648 1.635 
## 3 4.286 4.201 4.109 4.010 3.908 3.805 3.703 3.600 3.496 
## 4 6.374 6.298 6.224 6.152 6.079 6.006 5.932 5.859 5.787 
## 5 7.094 7.046 6.995 6.935 6.861 6.769 6.659 6.529 6.380 
## 6 6.493 6.444 6.391 6.334 6.273 6.211 6.147 6.082 6.015 
## f2002 f2003 f2004 f2005 f2006 f2007 f2008 f2009 f2010 
## 1 6.568 6.536 6.502 6.465 6.420 6.368 6.307 6.238 6.162 
## 2 1.637 1.648 1.665 1.681 1.694 1.702 1.706 1.703 1.693 
## 3 3.390 3.282 3.175 3.072 2.977 2.893 2.821 2.762 2.715 
## 4 5.717 5.651 5.589 5.531 5.476 5.423 5.372 5.321 5.269 
## 5 6.216 6.044 5.867 5.690 5.519 5.355 5.201 5.057 4.924 
## 6 5.947 5.877 5.804 5.729 5.653 5.575 5.496 5.417 5.336 
## f2011 f2012 f2013 f2014 f2015 f2016 f2017 p1986 p1987 
## 1 6.082 6.000 5.920 5.841 5.766 5.694 5.623 NA NA 
## 2 1.680 1.664 1.648 1.634 1.622 1.612 1.604 NA NA 
## 3 2.676 2.642 2.610 2.578 2.544 2.510 2.475 NA NA 
## 4 5.216 5.160 5.101 5.039 4.976 4.911 4.846 NA NA 
## 5 4.798 4.677 4.556 4.437 4.317 4.198 4.081 NA NA 
## 6 5.256 5.175 5.094 5.014 4.934 4.855 4.777 NA NA 
## p1988 p1989 p1990 p1991 p1992 p1993 p1994 p1995 p1996 
## 1 NA NA NA NA NA NA NA NA NA 
## 2 NA NA NA NA NA NA NA NA NA 
## 3 NA NA NA 96 NA NA NA NA NA 
## 4 NA NA NA NA NA NA 83.2 NA NA 
## 5 NA NA NA NA NA NA NA NA NA 
## 6 NA NA NA NA 57.6 NA NA NA NA 
## p1997 p1998 p1999 p2000 p2001 p2002 p2003 p2004 p2005 
## 1 NA NA NA NA 65.6 NA NA NA NA 
## 2 82 NA NA 92.4 NA NA NA NA 93.0 
## 3 NA 98 95.9 100.0 NA 98 NA NA 94.0 
## 4 NA NA 84.3 87.6 NA NA NA NA 87.3 
## 5 NA NA NA 26.7 NA NA NA NA 27.6 
## 6 NA NA 70.7 NA NA NA 84.3 NA 82.2 
## p2006 p2007 p2008 p2009 p2010 p2011 p2012 p2013 p2014 
## 1 NA 79.8 NA NA NA NA NA NA NA 
## 2 NA NA NA NA 99.1 NA NA NA NA 
## 3 94.0 99.2 NA NA NA 96.2 NA NA NA 
## 4 84.8 NA NA NA NA NA 90.6 NA NA 
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## 5 NA NA NA NA NA 33.9 NA NA 41.2 
## 6 NA 88.4 NA NA NA NA 85.2 NA NA 
## p2015 p2016 p2017 p2018 e2000 e2001 e2002 
## 1 NA 81.6 NA NA 2.334435 5.483824 4.072288 
## 2 NA 99.6 NA NA 6.505224 6.536262 5.690812 
## 3 97.2 97.2 NA NA 3.942030 4.228792 3.864327 
## 4 NA 93.2 NA NA 5.672228 4.850694 4.476869 
## 5 NA 62.4 NA NA 4.365290 4.713670 4.705820 
## 6 NA 84.3 NA NA 3.697726 3.884610 4.384152 
## e2003 e2004 e2005 e2006 e2007 e2008 
## 1 4.454100 4.757211 3.734836 3.366183 3.211438 3.495036 
## 2 5.610725 8.227844 7.034880 5.588461 5.445144 4.346749 
## 3 4.260178 4.091610 4.216728 4.163924 4.568384 4.646109 
## 4 4.645306 5.213588 5.353556 5.808850 6.259154 6.121604 
## 5 4.885341 4.304562 4.100981 4.226696 4.801925 4.280639 
## 6 3.651081 3.365547 2.949490 2.960601 3.013074 2.762090 
## e2009 e2010 e2011 e2012 e2013 e2014 
## 1 3.578677 2.736684 2.840603 2.692890 2.990929 2.798719 
## 2 4.689046 5.264181 3.777260 6.711859 8.269840 10.178299 
## 3 5.311070 5.764874 5.575126 5.322589 5.727331 5.652458 
## 4 6.223329 6.146566 5.978840 6.019660 5.074942 5.043462 
## 5 4.412473 5.466372 4.468978 4.539596 4.075065 4.033651 
## 6 2.936868 3.067742 3.789550 3.503983 3.461137 4.780977 
## e2015 e2016 
## 1 2.950431 2.877825 
## 2 10.117628 9.927321 
## 3 5.884248 6.121374 
## 4 5.262711 4.403621 
## 5 3.975932 3.974016 
## 6 5.827122 5.478273 

Code book for Dataframe Fert_prenatal See Problem 2.3.4 in Section 2.3 
homework 

7. Maintaining your balance may get harder as you grow older. A study 
was conducted to see how steady the elderly is on their feet. They had 
the subjects stand on a force platform and have them react to a noise. 
The force platform then measured how much they swayed forward and 
backward, and the data is in table #7.3.14 (Maintaining Balance while 
Concentrating, 2019). Do the data show that the elderly sway more than 
the mean forward sway of younger people, which is 18.125 mm? Test at 
the 5% level. Follow the filtering methods in other homework problems to 
create a data frame for only Elderly. 

Table #7.3.14: Sway (in mm) of Elderly Subjects 
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Sway <- read.csv( 
"https://krkozak.github.io/MAT160/sway.csv") 

head(Sway) 

## age fbsway sidesway 
## 1 Elderly 19 14 
## 2 Elderly 30 41 
## 3 Elderly 20 18 
## 4 Elderly 19 11 
## 5 Elderly 29 16 
## 6 Elderly 25 24 

Code book for data frame Sway 

Description How difficult is it to maintain your balance while concentrating? 
It is more difficult when you are older? Nine elderly (6 men and 3 women) and 
eight young men were subjects in an experiment. Each subject stood barefoot 
on a “force platform” and was asked to maintain a stable upright position and 
to react as quickly as possible to an unpredictable noise by pressing a hand held 
button. The noise came randomly and the subject concentrated on reacting 
as quickly as possible. The platform automatically measured how much each 
subject swayed in millimeters in both the forward/backward and the side-to-side 
directions. 

This data frame contains the following columns: 

Age: Elderly or Young 

FBSway: Sway in forward/backward direction 

SideSwayy: Sway in side to side direction 

Source Maintaining Balance while Concentrating. (n.d.). Retrieved July 19, 
2019, from http://www.statsci.org/data/general/balaconc.html 

References Teasdale, N., Bard, C., La Rue, J., and Fleury, M. (1993). On 
the cognitive penetrability of posture control. Experimental Aging Research 
19, 1-13. The data was obtained from the DASL Data and Story Line online 
database. 

Data Sources: 

Australian Human Rights Commission, (1996). Indigenous deaths in custody 
1989 - 1996. Retrieved from website: http://www.humanrights.gov.au/ 
publications/indigenous-deaths-custody 

CDC features - new data on autism spectrum disorders. (2013, November 26). 
Retrieved from http://www.cdc.gov/features/countingautism/ 

http://www.statsci.org/data/general/balaconc.html
http://www.humanrights.gov.au/publications/indigenous-deaths-custody
http://www.humanrights.gov.au/publications/indigenous-deaths-custody
http://www.cdc.gov/features/countingautism/
https://krkozak.github.io/MAT160/sway.csv
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Center for Disease Control and Prevention, Prevalence of Autism Spectrum 
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Community-Report.pdf 

Federal Trade Commission, (2008). Consumer fraud and identity theft complaint 
data: January-December 2007. Retrieved from website: http://www.ftc.gov/ 
opa/2008/02/fraud.pdf 

Sanchez, Y. W. (2016, October 20). Poll: Arizona voters still favor legal-
izing marijuana. Retrieved from https://www.azcentral.com/story/news/ 
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https://data.worldbank.org/indicator/EN.ATM.CO2E.PC 

(n.d.). Retrieved July 18, 2019, from https://www.idvbook.com/teaching-
aid/data-sets/the-breakfast-cereal-data-set/ The Best Kids’ Cereal. (n.d.). 
Retrieved July 18, 2019, from https://www.ranker.com/list/best-kids-
cereal/ranker-food 
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122:74-84. Michael K. Saiki, Darell G. Slotton, Thomas W. May, Shaun M. Ay-
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