Chapter 2

Graphical Descriptions of Data

In chapter 1, you were introduced to the concepts of population, which again is a collection of all the measurements from the individuals of interest. Remember, in most cases you can't collect the entire population, so you have to take a sample. Thus, you collect data either through a sample or a census. Now you have a large number of data values. What can you do with them? No one likes to look at just a set of numbers. One thing is to organize the data into a table or graph. Ultimately though, you want to be able to use that graph to interpret the data, to describe the distribution of the data set, and to explore different characteristics of the data. The characteristics that will be discussed in this chapter and the next chapter are:

- 1. Center: middle of the data set, also known as the average.
- 2. Variation: how much the data varies.
- 3. Distribution: shape of the data (symmetric, uniform, or skewed).
- 4. Qualitative data: analysis of the data
- 5. Outliers: data values that are far from the majority of the data.
- 6. Time: changing characteristics of the data over time.

This chapter will focus mostly on using the graphs to understand aspects of the data, and not as much on how to create the graphs. There is technology that will create most of the graphs, though it is important for you to understand the basics of how to create them.

This textbook uses R Studio to perform all graphical and descriptive statistics, and all statistical inference. When using R Studio, every command is performed the same way. You start off with a goal(explanatory variable \sim response variable, data=data frame name,...)

R Studio uses packages to make calculations easier. For this textbook, you will

mostly need the package mosaic. There will be others that you will need on occasion, but you will be told that at the time. Most likely, mosaic is already installed in your R Studio. If you wish to install other packages you use the command

```
install.packages("name of package")
```

where you replace the name of package with the package you wish to install.

Once the package is installed, then you will need to tell R Studio you want to use it every time you start R Studio. The command to tell R Studio you want to use a package is

```
library("name of package")
```

You will need to turn on the package mosaic. The NHANES package contains a data frame that is useful. Both are accessed by doing.

```
library("mosaic")
library("NHANES")
library("StatsUsingTechnologyData")
```

Back to the basic command

goal(explanatory variable ~ response variable, data=data frame name,...)

The goal depends on what you want to do. If you want to create a graph then you would need

```
gf_graphtype(explanatory variable ~
response variable, data=dataframe_name, ...)
```

As an example if you want to create a density plot of cholesterol levels on day 2 from a dataframe called Cholesterol, then your command would be

```
gf_density(~day2, data=Cholesterol)
```

You will see more on what the different commands are that you would use. A word about the ... at the end of the command. That means there are other things you can do, but that is up to you if you want to actually do them. They do not need to be used if you don't want to. The following sections will show you how to create the different graphs that are usually completed in an introductory statistics course.

2.1 Qualitative Data

Remember, qualitative data are words describing a characteristic of the individual. There are several different graphs that are used for qualitative data. These

graphs include bar graphs, Pareto charts, and pie charts. Bar graphs can be created using a statistical program like R Studio.

Bar graphs or charts consist of the frequencies on one axis and the categories on the other axis. Drawing the bar graph using R is performed using the following command.

```
gf_bar(~explanatory variable, data=Dataframe)
```

2.1.1 Example: Drawing a Bar Chart**

Data was collected for two semesters in a statistics class. The data frame in is the table #2.1.1. The command

```
head(data frame)
```

shows the variables and the first few lines of the data set.

Table #2.1.1: Statistics class survey

```
Class<-read.csv(
  "https://krkozak.github.io/MAT160/class survey.csv")
head(Class)
##
     vehicle gender distance_campus
                                                ice_cream rent
## 1
        None Female
                                 1.5
                                             Cookie Dough
                                                           724
## 2 Mercury Female
                                14.7
                                                  Sherbet
                                                           200
## 3
        Ford Female
                                 2.4 Chocolate Brownie.
                                                            600
## 4
      Toyota Female
                                 5.2
                                                   coffee
                                                             0
## 5
        Jeep
               Male
                                 2.0
                                             Cookie Dough
                                                           600
## 6
                                                           500
      Subaru
               Male
                                 5.0
                                                     none
##
                                         major height
## 1 Environmental and Sustainability Studies
## 2
                        Administrative Justice
                                                    60
## 3
                                       Bio Chem
                                                    68
## 4
                                                    66
## 5
                            Pre-health Careers
                                                    71
## 6
                                       Finance
                                                    72
##
            winter
## 1
          Liked it
## 2 Don't like it
## 3
          Liked it
## 4
          Loved it
## 5
          Loved it
        No opinion
```

Every data frame has a code book that describes the data set, the source of the data set, and a listing and description of the variables in the data frame.

Code book for Data Frame Class

Description Survey results from two semesters of statistics classes at Coconino Community College in the years 2018-2019.

Format

This data frame contains the following columns:

vehicle: Type of car a student drives

gender: Self declared gender of a student

distance_campus: how far a student lives from the Lone Tree Campus of Co-

conino Community College (miles)

ice_cream: favorite ice cream flavor

rent: How much a student pays in rent

major: Students declared major

height: height of the student (inches)

winter: Student's opinion of winter (Love it, Like it, Don't like, No opinion)

Source

Kozak K (2019). Survey results form surveys collected in statistics class at Coconino Community College.

References

Kozak, 2019

Create a bar graph of vehicle type. To do this in R Studio, use the command

```
gf_bar(~variable, data=DataFrame, ...)
```

where gf_bar is the goal, vehicle is the name of the response variable (there is no explanatory variable), the dataframe is Class, and a title was added to the graph.

Notice from the graph (Figure 2.1), you can see that Chevrolet and Ford are the more popular car, with Jeep, Subaru, and Toyota not far behind. Many types seems to be the lesser used, and tied for last place. However, more data would help to figure this out.

All graphs should have labels on each axis and a title for the graph.*

The beauty of data frames with multiple variables is that you can answer many questions from the data. Suppose you want to see if gender makes a difference for the type of car a person drives. If you are a car manufacturer, if you knew that certain genders like certain cars, then you would advertise to the different

Figure 2.1: Bar Graph for Type of Car Data

genders. To create a bar graph that separates based on gender, perform the following command in R Studio.

```
gf_bar(~vehicle|gender, data=Class, title="Cars driving by students
    in statistics class")
```

Notice a Ford is driven by females more than any other car, while Chevrolet, Mercury, and Subaru cars are equally driven by males. Obviously a larger sample would be needed to make any conclusions from this data.

There are other types of graphs that can be created for quantitative variables. Another type is known as a dot plot. The command for this graph (Figure 2.3) is as follows.

```
## `stat_bindot()` using `bins = 30`. Pick better value with `binwidth`.
```

Notice a dot plot is like a bar chart. Both give you the same information. You can also divide a dot plot by gender. Another type of graph that is also useful and similar to the dot plot is a point plot (scatter plot). In this plot (Figure 2.4) you can graph the explanatory variable versus the response variable. The command for this in R Studio is as follows.

Figure 2.2: Bar Graph for Type of Car Data

Figure 2.3: Dot Plot for Type of Car Data

Figure 2.4: Point plot for Type of Car Data versus gender

The problem with this graph (Figure 2.4) is that if there are multiple females who drive a Ford, only one dot is shown. So it is best to spread the dots out using a plot known as a jitter plot. In a jitter plot the dots are randomly moved off the center line. The command for a jitter plot is as follows:

Now you can see (Figure 2.5) that there are 4 females who drive a Ford. There is one female who drives a Honda. Other information about other cars and genders can be seen better than in the point plot and the bar graph. Jitter plots are useful to see how many data values are for each qualitative data values.

There are many other types of graphs that can be used on qualitative data. There are spreadsheet software packages that will create most of them, and it is better to look at them to see how to create then. It depends on your data as to which may be useful, but the bar, dot, and jitter plots are really the most useful.

Figure 2.5: Jitter plot for Type of Car Data versus gender

2.1.2 Homework

1. Eyeglassomatic manufactures eyeglasses for different retailers. The number of lenses for different activities is in table #2.1.2.

Table #2.1.2: Data for Eyeglassomatic

```
Eyeglasses<-read.csv(
   "https://krkozak.github.io/MAT160/eyglasses.csv")
head(Eyeglasses)
## activity</pre>
```

```
## 1 Grind
## 2 Grind
## 3 Grind
## 4 Grind
## 5 Grind
## 6 Grind
```

Code book for Data Frame Eyeglasses

Description Activities that an Eyeglass company performs when making eyeglasses, Grind means ground the lenses and put them in frames, multicoat means put tinting or coatings on lenses and then put them in frames, assemble means received frames and lenses from other sources and put them together, make

frames means made the frames and put lenses in from other sources, receive finished means received glasses from other source unknown means do not know where the lenses came from.

Format

This data frame contains the following columns:

activity: The activity that is completed to make the eyeglasses by Eyeglassomatic

Source John Matic provided the data from a company he worked with. The company's name is fictitious, but the data is from an actual company.

References John Matic (2013)

Make a bar chart of this data. State any findings you can see from the graph.

2. Data was collected for two semesters in a statistics class drive. The data frame in is the table #2.1.3.

Table #2.1.3 Data Frame of Statistics Class Survey

```
Class<-read.csv(
  "https://krkozak.github.io/MAT160/class_survey.csv")
head(Class)
##
     vehicle gender distance_campus
                                                ice_cream rent
## 1
        None Female
                                 1.5
                                            Cookie Dough
## 2 Mercury Female
                                14.7
                                                  Sherbet
                                                           200
## 3
        Ford Female
                                 2.4 Chocolate Brownie.
                                                           600
                                 5.2
## 4
      Toyota Female
                                                   coffee
## 5
        Jeep
               Male
                                 2.0
                                            Cookie Dough
                                                           600
## 6
     Subaru
               Male
                                 5.0
                                                           500
                                                     none
##
                                         major height
## 1 Environmental and Sustainability Studies
                                                    61
## 2
                        Administrative Justice
                                                    60
## 3
                                      Bio Chem
                                                    68
## 4
                                                    66
## 5
                            Pre-health Careers
                                                    71
## 6
                                       Finance
                                                    72
##
            winter
## 1
          Liked it
## 2 Don't like it
## 3
          Liked it
## 4
          Loved it
## 5
          Loved it
        No opinion
```

Code book for Data Frame Class see Example #2.1.1

Create a bar graph and dot plot of the variable ice cream. State any findings you can see from the graphs.

3. The number of deaths in the US due to carbon monoxide (CO) poisoning from generators from the years 1999 to 2011 are in table #2.1.4 (Hinatov, 2012). Create a bar chart of this data. State any findings you see from the graph.

Table #2.1.4: Data of Number of Deaths Due to CO Poisoning

```
Area<-read.csv(
   "https://krkozak.github.io/MAT160/area.csv")
head(Area)

## deaths
## 1 Urban
## 2 Urban
## 3 Urban
## 4 Urban
## 5 Urban
## 6 Urban
```

4. Data was collected for two semesters in a statistics class drive. The data frame in is the table #2.1.5. Create a bar graph and dot plot of the variable major. Create a jitter plot of major and gender. State any findings you can see from the graphs.

**Table #2.1.5 Data Frame of Class Survey

```
Class<-read.csv(</pre>
  "https://krkozak.github.io/MAT160/class_survey.csv")
head(Class)
##
     vehicle gender distance_campus
                                                  ice_cream rent
## 1
        None Female
                                  1.5
                                              Cookie Dough
                                                             724
## 2 Mercury Female
                                 14.7
                                                    Sherbet
                                                             200
## 3
        Ford Female
                                  2.4 Chocolate Brownie.
                                                              600
## 4
      Toyota Female
                                  5.2
                                                     coffee
                                                               0
## 5
                                  2.0
                                                             600
         Jeep
                Male
                                              Cookie Dough
## 6
      Subaru
                Male
                                  5.0
                                                       none
                                                             500
##
                                           major height
## 1 Environmental and Sustainability Studies
                                                      61
## 2
                         Administrative Justice
                                                      60
## 3
                                        Bio Chem
                                                      68
## 4
                                                      66
## 5
                             Pre-health Careers
                                                      71
## 6
                                         Finance
                                                      72
##
             winter
## 1
           Liked it
```

Code book for Data Frame Class see Example #2.1.1

5. Eyeglassomatic manufactures eyeglasses for different retailers. They test to see how many defective lenses they made during the time period of January 1 to March 31. Table #2.1.6 gives the defect and the number of defects. Create a bar chart of the data and then describe what this tells you about what causes the most defects.

Table #2.1.6: Data of Defect Type

```
Defects<- read.csv(
  "https://krkozak.github.io/MAT160/defects.csv")
head(Defects)
##
        type
## 1
       small
## 2
       small
## 3
          pd
## 4
      flaked
## 5 scratch
## 6
        spot
```

Code book for Data Frame Defects

Description Types of defects that an Eyeglass company sees in the lenses they make into eyeglasses.

Format

This data frame contains the following columns:

type: The type of defect that is Seen when making eyeglasses by Eyeglassomatic

Source John Matic provided the data from a company he worked with. The company's name is fictitious, but the data is from an actual company.

References John Matic (2013)

6. American National Health and Nutrition Examination (NHANES) surveys is collected every year by the US National Center for Health Statistics (NCHS). The data frame is in table #2.1.7. Create a bar chart of Martial-Status. Create a jitter plot of MaritalStatus versus Education. Describe any findings from the graphs.

Table #2.1.7: Data Frame NHANES

head(NHANES)

```
## # A tibble: 6 x 76
##
        ID SurveyYr Gender Age AgeDecade AgeMonths Race1
##
     <int> <fct>
                    <fct> <int> <fct>
                                               <int> <fct>
## 1 51624 2009 10
                              34 " 30-39"
                   male
                                                 409 White
                              34 " 30-39"
## 2 51624 2009_10 male
                                                 409 White
                              34 " 30-39"
## 3 51624 2009_10 male
                                                 409 White
## 4 51625 2009 10 male
                               4 " 0-9"
                                                  49 Other
                              49 " 40-49"
## 5 51630 2009_10 female
                                                 596 White
                               9 " 0-9"
## 6 51638 2009_10 male
                                                 115 White
## # ... with 69 more variables: Race3 <fct>, Education <fct>,
       MaritalStatus <fct>, HHIncome <fct>, HHIncomeMid <int>,
## #
## #
       Poverty <dbl>, HomeRooms <int>, HomeOwn <fct>,
## #
       Work <fct>, Weight <dbl>, Length <dbl>, HeadCirc <dbl>,
## #
       Height <dbl>, BMI <dbl>, BMICatUnder20yrs <fct>,
## #
       BMI_WHO <fct>, Pulse <int>, BPSysAve <int>,
## #
       BPDiaAve <int>, BPSys1 <int>, BPDia1 <int>,
       BPSys2 <int>, BPDia2 <int>, BPSys3 <int>, BPDia3 <int>,
## #
       Testosterone <dbl>, DirectChol <dbl>, TotChol <dbl>,
## #
       UrineVol1 <int>, UrineFlow1 <dbl>, UrineVol2 <int>,
## #
       UrineFlow2 <dbl>, Diabetes <fct>, DiabetesAge <int>,
## #
## #
       HealthGen <fct>, DaysPhysHlthBad <int>,
## #
       DaysMentHlthBad <int>, LittleInterest <fct>,
## #
       Depressed <fct>, nPregnancies <int>, nBabies <int>,
## #
       Age1stBaby <int>, SleepHrsNight <int>,
## #
       SleepTrouble <fct>, PhysActive <fct>,
## #
       PhysActiveDays <int>, TVHrsDay <fct>, CompHrsDay <fct>,
## #
       TVHrsDayChild <int>, CompHrsDayChild <int>,
## #
       Alcohol12PlusYr <fct>, AlcoholDay <int>,
## #
       AlcoholYear <int>, SmokeNow <fct>, Smoke100 <fct>,
## #
       Smoke100n <fct>, SmokeAge <int>, Marijuana <fct>,
## #
       AgeFirstMarij <int>, RegularMarij <fct>,
## #
       AgeRegMarij <int>, HardDrugs <fct>, SexEver <fct>,
## #
       SexAge <int>, SexNumPartnLife <int>,
## #
       SexNumPartYear <int>, SameSex <fct>,
## #
       SexOrientation <fct>, PregnantNow <fct>
```

To view the code book for NHANES, type help("NHANES") in R Studio after you load the NHANES packages using library("NHANES")

2.2 Quantitative Data

There are several different graphs for quantitative data. With quantitative data, you can talk about how the data is distributed, called a distribution. The shape of the distribution can be described from the graphs.

Histogram: a graph of frequencies (counts) on the vertical axis and classes on the horizontal axis. The height of the rectangles is the frequency and the width is the class width. The width depends on how many classes (bins) are in the histogram. The shape of a histogram is dependent on the number of bins. In R Studio the command to create a histogram is

```
gf_histogram(~response variable, data=Data Frame, title="title
    of the graph")
```

The last part of the command puts a title on the graph. You type in what ever you want for the title in the quotes.

Density Plot: Similar to a histogram, except smoothing is created to smooth out the graph. The shape is not dependent on the number of bins so the distribution is easier to determine from the density plot. In R Studio the command to create a density plot is

```
gf_density(~response variable, data=Data Frame, title="title of the graph")
```

The last part of the command puts a title on the graph. You type in what every you want for the title in the quotes.

Dot Plot: Dot plots can be created for both quantitative and qualitative variables. For smaller data frames, a dot plot can be useful to determine the shape of the distribution. The command in R Studio is

```
gf_dotplot(~response variable, data=Data Frame, title="title
of the graph")
```

The last part of the command puts a title on the graph. You type in what ever you want for the title in the quotes.

2.2.1 Example: Drawing a Histogram and Density plot

Data was collected for two semesters in a statistics class drive.

Table #2.2.1: Statistis class survey

```
Class<-read.csv(
   "https://krkozak.github.io/MAT160/class_survey.csv")
head(Class)

## vehicle gender distance_campus ice_cream rent
## 1 None Female 1.5 Cookie Dough 724
## 2 Mercury Female 14.7 Sherbet 200
```

```
## 3
        Ford Female
                                   2.4 Chocolate Brownie.
                                                              600
## 4
      Toyota Female
                                  5.2
                                                     coffee
                                                                0
## 5
                                   2.0
                                                              600
        Jeep
                Male
                                               Cookie Dough
## 6
      Subaru
                Male
                                  5.0
                                                              500
                                                       none
##
                                           major height
## 1 Environmental and Sustainability Studies
                                                      61
## 2
                         Administrative Justice
                                                      60
## 3
                                        Bio Chem
                                                      68
## 4
                                                      66
## 5
                             Pre-health Careers
                                                      71
## 6
                                         Finance
                                                      72
##
             winter
## 1
          Liked it
## 2 Don't like it
## 3
          Liked it
## 4
          Loved it
## 5
          Loved it
## 6
        No opinion
```

Code book for Data Frame Class See Example #2.1.1.

Draw a histogram, density plot, and a dot plot for the variable the distance a student lives from the Lone Tree Campus of Coconino Community College. Describe the story the graphs tell.

Solution:

`stat_bindot()` using `bins = 30`. Pick better value with `binwidth`.

Notice the histogram, density plot, and dot plot are all very similar, but the density plot is smother. They all tell you similar ideas of the shape of the distribution. Reviewing the graphs you can see that most of the students live within 10 miles of the Lone Tree Campus, in fact most live within 5 miles from the campus. However, there is a student who lives around 50 miles from the Lone Tree Campus. This is a great deal farther from the rest of the data. This value could be considered an outlier. An **outlier** is a data value that is far from the rest of the values. It may be an unusual value or a mistake. It is a data value that should be investigated. In this case, the student lived really far from campus, thus the value is not a mistake, and is just very unusual. The density plot is probably the best plot for most data frames.

Figure 2.6: Histogram of Distance a Student Lives from the Lone Tree Campus

Figure 2.7: Density plot of Distance a Student Lives from the Lone Tree Campus

Figure 2.8: Dot Plot of Distance a Student Lives from the Lone Tree Campus

There are other aspects that can be discussed, but first some other concepts need to be introduced.

** Shapes of the distribution:**

When you look at a distribution, look at the basic shape. There are some basic shapes that are seen in histograms. Realize though that some distributions have no shape. The common shapes are symmetric, skewed, and uniform. Another interest is how many peaks a graph may have. This is known as modal.

Symmetric means that you can fold the graph in half down the middle and the two sides will line up. You can think of the two sides as being mirror images of each other. Skewed means one "tail" of the graph is longer than the other. The graph is skewed in the direction of the longer tail (backwards from what you would expect). A uniform graph has all the bars the same height.

Modal refers to the number of peaks. Unimodal has one peak and bimodal has two peaks. Usually if a graph has more than two peaks, the modal information is not longer of interest.

Other important features to consider are gaps between bars, a repetitive pattern, how spread out is the data, and where the center of the graph is.

Examples of graphs:

This graph is roughly symmetric and unimodal:

Graph #.2.1: Symmetric Distribution

Figure 2.9: Graph of roughly symmetric graph

This graph is symmetric and bimodal:

Graph #2.2.2: Symmetric and Bimodal Distribution

This graph is skewed to the right:

Graph #2.2.3: Skewed Right Distribution

This graph is skewed to the left and has a gap:

Graph #2.2.4: Skewed Left Distribution

This graph is uniform since all the bars are the same height:

Graph #2.2.5: Uniform Distribution

2.2.2 Example: Drawing a Histogram and Density plot

Data was collected from the Chronicle of Higher Education for tuition from public four year colleges, private four year colleges, and for profit four year colleges. The data frame is in table #2.2.2. Draw a density plot of instate tuition levels for all four year institutions, and then separate the density plot for instate tuition based on type of institution. Describe any findings from the graph.

table #2.2.2: Tuition of Four Year Colleges

```
Tuition<-read.csv(
   "https://krkozak.github.io/MAT160/Tuition_4_year.csv")
head(Tuition)</pre>
```


Figure 2.10: Graph of symmetric and bimodal graph

Figure 2.11: Graph of skewed right graph

Figure 2.12: Graph of Skewed Left graph

Figure 2.13: Graph of uniform graph

##					INSTITUTION
##	1		Unive	ersity of Al	laska AnchoragePublic 4-year
##	2		Unive	ersity of Al	aska FairbanksPublic 4-year
##	3		Unive	ersity of Al	laska SoutheastPublic 4-year
##	4			Alaska	Bible CollegePrivate 4-year
##	5		A	Alaska Pacif	fic UniversityPrivate 4-year
##	6	Alabama Agricul	tural	and Mechani	cal UniversityPublic 4-year
##		TYPE	STATE	ROOM_BOARD	INSTATE_TUITION
##	1	Public_4 year	AK	12200	7688
##	2	Public_4 year	AK	8930	8087
##	3	Public_4 year	AK	9200	7092
##	4	Private_4_year	AK	5700	9300
##	5	Private_4_year	AK	7300	20830
##	6	Public_4 year	AL	8379	9698
##		INSTATE_TOTAL C	UTOFST	CATE_TUITION	N OUTOFSTATE_TOTAL
##	1	19888		23858	36058
##	2	17017		24257	33187
##	3	16292		19404	28604
##	4	15000		9300	15000
##	5	28130		20830	28130
##	6	18077		17918	3 26297

Code book for Data Frame Tuition

Description Cost of four year institutions.

Format

This data frame contains the following columns:

INSTITUTION: Name of four year institution

TYPE: Type of four year institution, Public_4_year, Private_4_year, For_profit_4_year.

STATE: What state the institution resides

ROOM_BOARD: The cost of room and board at the institution (\$)

INSTATE_TUTION: The cost of instate tuition (\$)

INSTATE_TOTAL: The cost of room and board and instate tuition (\$ per year)

OUTOFSTATE_TUTION: The cost of out of state tuition (\$ per year)

OUTOFSTATE_TOTAL: The cost of room and board and out of state tuition (\$ per year)

Source Tuition and Fees, 1998-99 Through 2018-19. (2018, December 31). Retrieved from https://www.chronicle.com/interactives/tuition-and-fees

References Chronicle of Higher Education *, December 31, 2018.

```
** Soultion **
```


Figure 2.14: Density Plot for Instate Tuition Levels at all Four-Year Colleges**

The distribution is skewed right, with no gaps. Most institutions in state is less than \$20,000 per year though some go as high as \$60,00 per year. When separated by public versus private and for profit, most public are much less than \$20,000 per year while private four year cost around \$30,000 per year, and for profit are around \$20,000 per year.

There are other types of graphs for quantitative data. They will be explored in the next section.

2.2.3 Homework

1. The weekly median incomes of males and females for specific occupations, are given in table #2.2.3 (CPS News Releases. (n.d.). Retrieved July 8, 2019, from https://www.bls.gov/cps/). Create a density plot for males and females. Discuss any findings from the graph. Note: to put two graphs on the same axis, type %>% at the end of the first command and

For_profit_4_year Private_4_year Public_4 year 0.00015 -0.00010 density 0.00005 -0.00000 20000 40000 (INSTATE_TUITION Ö 20000 600000 600000 20000 40000 40000 60000

Figure 2.15: Density Plot for Instate Tuition Levels at all Four-Year Colleges**

then type the command for the second graph on the next line. Also, use fill="pick a color" in the command to plot the graphs with different colors so the two graphs can be easier to distinguish.

table #2.2.3: Weekly median wages for certain occupations

Instate Tuition at all Four Year instittions

```
Wages<- read.csv(
   "https://krkozak.github.io/MAT160/wages.csv")
head(Wages)</pre>
```

##						Occupation
##	1	Ma	nagement, p	rofessional,	and related	occupations
##	2	Management,	business, a	and financial	l operations	occupations
##	3				Management	occupations
##	4				Chie	f executives
##	5			General	and operation	ons managers
##	6					Legislators
##		Numworkers	median_wage	male_worker	male_wage	
##	1	48808	1246	23685	1468	
##	2	19863	1355	10668	1537	
##	3	13477	1429	7754	1585	
##	4	1098	2291	790	2488	
##	5	939	1338	656	1427	

6	14	NA	10	NA
	female_worker	female_wage		
1	25123	1078		
2	9195	1168		
3	5724	1236		
4	307	1736		
5	283	1139		
6	4	NA		
	6 1 2 3 4 5 6	female_worker 1 25123 2 9195 3 5724 4 307 5 283	female_worker female_wage 1	female_worker female_wage 1

Code book for Data Frame Wages

Description Median weekly earnings of full-time wage and salary workers by detailed occupation and sex. The Current Population Survey (CPS) is a monthly survey of households conducted by the Bureau of Census for the Bureau of Labor Statistics. It provides a comprehensive body of data on the labor force, employment, unemployment, persons not in the labor force, hours of work, earnings, and other demographic and labor force characteristics.

Format

This data frame contains the following columns:

Occupation: Occupations of workers.

Numworkers: The number of workers in each occupation (in thousands of workers)

median_wage: Median weekly wage (\$)

male worker: number of male workers (in thousands of workers)

male wage: Median weekly wage of male workers (\$)

female_worker: number of female workers (in thousands of workers)

female_wage: Median weekly wage of female workers (\$)

Source CPS News Releases. (n.d.). Retrieved July 8, 2019, from https://www.bls.gov/cps/

References Current Population Survey (CPS) retrieved July 8, 2019.

2. The density of people per square kilometer for certain countries is in table #2.2.4 (World Bank, 2019). Create density plot of density in 2018 for just Sub-Saharan Africa. Describe what story the graph tells.

Table #2.2.4: Data of Density of People per Square Kilometer

```
Density<- read.csv(
   "https://krkozak.github.io/MAT160/density.csv")
head(Density)

## Country_Name Country_Code Region
## 1 Aruba ABW Latin America & Caribbean</pre>
```

```
## 2
     Afghanistan
                         AFG
                                            South Asia
## 3
                         AGO
          Angola
                                    Sub-Saharan Africa
## 4
         Albania
                        ALB
                                 Europe & Central Asia
## 5
         Andorra
                         AND
                                 Europe & Central Asia
## 6
                         ARB
      Arab World
##
            IncomeGroup
                         y1961
                                       y1962
                                                  y1963
## 1
            High income 307.988889 312.361111 314.972222
## 2
             Low income 14.044987
                                  14.323808 14.617537
## 3 Lower middle income
                         4.436891
                                   4.498708
                                              4.555593
## 4 Upper middle income 60.576642 62.456898 64.329234
## 5
            High income 30.585106 32.702128 34.919149
## 6
                         8.430860
                                    8.663154
                                              8.903441
##
         y1964
                    y1965
                              y1966
                                         y1967
## 1 316.844444 318.666667 320.638889 322.527778 324.366667
     14.926295 15.250314 15.585020 15.929795 16.293023
     4.600180
                4.628676
## 3
                          4.637213
                                     4.631622
                                                4.629544
## 4
     66.209307 68.058066 69.874927 71.737153 73.805547
## 5
     37.168085
               39.465957 41.802128 44.165957
                                               46.574468
                 9.410965
      9.152526
                           9.679951
                                      9.959490
                                                10.247580
##
         y1969
                   y1970
                              y1971
                                         y1972
                                                   y1973
## 1 326.255556 328.127778 330.222222 332.444444 334.683333
## 2 16.686236 17.114913 17.577191 18.060863 18.547565
     4.654892
               4.724765
                           4.845413
                                     5.012073
                                                5.211328
## 4 75.974270 77.937190 79.848650 81.865912 83.823066
## 5
     49.059574 51.651064 54.380851 57.217021 60.068085
## 6 10.541383 10.839409
                         11.140162 11.445801
                                               11.762925
         y1974
                   y1975
                              y1976
                                        y1977
                                                   y1978
## 1 336.266667 336.983333 336.588889 335.366667 333.905556
## 2 19.013188 19.436265 19.825220 20.174779 20.435006
## 3
                5.634074
                          5.839022
                                     6.042941
      5.423422
                                                6.249063
## 4 85.770949 87.767555 89.727226 91.735255 93.659343
## 5
     62.808511 65.329787 67.610638 69.725532
                                               71.780851
## 6 12.100336
               12.464221 12.856964
                                     13.276051
                                               13.716559
         y1979
                   y1980
                                        y1982
                              y1981
                                                   v1983
## 1 333.222222 333.866667 336.483333 340.805556 345.561111
## 2 20.542009 20.458461 20.175341 19.732451 19.204316
## 3
      6.463517
                6.690695
                           6.930654
                                     7.181319
                                                7.442124
    95.541314 97.518139 99.491095 101.615985 103.794161
## 5 74.080851 76.738298 79.787234 83.221277 86.951064
     14.171137 14.634158 15.103942 15.581254
## 6
                                               16.065812
                   y1985
                              y1986
         y1984
                                         y1987
                                                    y1988
## 1 349.088889 350.144444 348.022222 343.516667 339.327778
## 2 18.693582 18.286015 17.976563 17.774920
                                               17.795553
      7.712163
                7.990693
                           8.277943
                                      8.574035
                                                8.877878
## 4 106.001058 108.202993 110.315146 112.540329 114.683796
## 5 90.863830 94.893617 98.972340 103.095745 107.306383
```

```
16.557944
                17.057705
                                      18.075438
                            17.563945
                                                 18.592082
                                y1991
                                          y1992
##
          y1989
                     y1990
## 1 339.066667 345.272222 359.011111 379.08333 402.80000
    18.179820
                19.012205
                            20.370396
                                      22.18783
                                                 24.22664
       9.188078
                 9.503799
                             9.825059 10.15270
                                                10.48773
## 4 117.808139 119.946788 119.225912 118.50507 117.78420
## 5 111.591489 115.976596 120.576596 125.29362 129.72553
     19.114029
                19.817110 20.358106 20.73408
                                                21.29364
                                                 y1998
         y1994
                   y1995
                             y1996
                                       y1997
## 1 426.11111 446.24444 462.22222 474.72778 484.87222
## 2 26.15527 27.74049
                         28.87822 29.64974
## 3 10.83159 11.18570
                         11.55107 11.92875
                                             12.32021
## 4 117.06336 116.34248 115.62164 114.90077 114.17993
## 5 133.35532 135.85106 136.93617 136.86596 136.47234
     21.84602
                22.52760
                         23.05216
                                    23.57027
##
         y1999
                   y2000
                             y2001
                                       y2002
                                                 y2003
## 1 494.47222 504.73889 516.10000 527.73333 538.98333
     30.89612
               31.82911
                         33.09590
                                    34.61810
                                              36.27251
## 3 12.72709
               13.15110
                         13.59249
                                   14.05263
## 4 113.45905 112.73821 111.68515 111.35073 110.93489
## 5 136.95745 139.12766 143.27872 149.04043 155.70638
## 6
     24.60020
                25.12980
                         25.67166
                                   26.22642
                                              26.80081
         y2004
                   y2005
                             y2006
                                       y2007
## 1 548.53889 555.72778 560.18889 562.34444 563.10000
                                              42.46282
## 2 37.87440
                39.29522
                         40.48808
                                    41.51049
## 3 15.04624
              15.58803
                         16.16259
                                   16.76856
                                             17.40245
## 4 110.47223 109.90828 109.21704 108.39478 107.56620
## 5 162.22128 167.80213 172.32553 175.92340 178.42979
     27.40153
                28.03371
## 6
                         28.69994
                                    29.39751
                                              30.11889
         y2009
                   y2010
                             y2011
                                       y2012
## 1 563.63889 564.82778 566.92222 569.77778 573.10556
     43.49296
               44.70408
                         46.13150
                                    47.73056
                                              49.42804
## 3 18.05910
               18.73446
                         19.42782
                                   20.13951
                                              20.86771
## 4 106.84376 106.31463 106.02901 105.85405 105.66029
## 5 179.70851 179.67872 178.18511 175.37660 171.85957
     30.85858
##
                31.59402
                         32.33012
                                    33.06767
                                              33.80379
         y2014
                   y2015
                             y2016
                                       y2017
## 1 576.52222 579.67222 582.62222 585.36667 588.02778
## 2 51.11478 52.71207
                         54.19711
                                    55.59599
                                              56.93776
## 3 21.61047
               22.36655
                         23.13506 23.91654
                                              24.71305
## 4 105.44175 105.13515 104.96719 104.87069 104.61226
## 5 168.53830 165.98085 164.46170 163.83191 163.84255
## 6 34.53398
                35.25690
                         35.96876
                                   36.66980 37.37237
```

Code book for Data Frame Density

Description Population density of all countries in the world

Format

This data frame contains the following columns:

Country Name: The name of countries or regions around the world

Country_Code: The 3 letter code for a country or region

Region: World Banks classification of where the country is in the world

Incomegroup: World Banks classification of what income level the country is considered to be

y1961-y2018: population density for the years 1961 through 2018, people per sq. km of land area, population density is midyear population divided by land area in square kilometers. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship—except for refugees not permanently settled in the country of asylum, who are generally considered part of the population of their country of origin. Land area is a country's total area, excluding area under inland water bodies, national claims to continental shelf, and exclusive economic zones. In most cases the definition of inland water bodies includes major rivers and lakes.

Source Population density (people per sq. km of land area). (n.d.). Retrieved July 9, 2019, from https://data.worldbank.org/indicator/EN.POP.DNST

References Food and Agriculture Organization and World Bank population estimates.

Since the Density data frame is for all countries, a new data frame must be created with just Su-Saharan Africa. This is created by using the following command

```
Africa<-
Density%>%
filter(Region=="Sub-Saharan Africa")
head(Africa)
```

```
##
                 Country_Name Country_Code
                                                       Region
## 1
                       Angola
                                       AGO Sub-Saharan Africa
## 2
                      Burundi
                                       BDI Sub-Saharan Africa
## 3
                        Benin
                                       BEN Sub-Saharan Africa
## 4
                 Burkina Faso
                                       BFA Sub-Saharan Africa
## 5
                                       BWA Sub-Saharan Africa
                     Botswana
## 6 Central African Republic
                                       CAF Sub-Saharan Africa
##
                                           y1962
                                                       y1963
             IncomeGroup
                               y1961
## 1 Lower middle income
                           4.4368910
                                       4.4987078
                                                   4.5555932
## 2
              Low income 111.0762461 113.2134346 115.4371885
## 3
              Low income 21.8682778 22.1966655
                                                 22.5510731
              Low income 17.8895468 18.1298465
                                                 18.3765387
## 5 Upper middle income
                         0.9046371
                                       0.9242108
                                                   0.9452208
```

```
## 6
                          2.4496228
                                       2.4911073
                                                   2.5351857
              Low income
##
          y1964
                       y1965
                                  y1966
                                             y1967
                                                        y1968
                               4.637213
## 1
       4.6001797
                   4.6286757
                                          4.631622
                                                     4.629544
## 2 117.8461838 120.4976246 123.461449 126.682944 129.942640
## 3 22.9333540 23.3447677 23.786440
                                        24.257778 24.756917
## 4 18.6362939 18.9139985
                            19.211853
                                        19.528578 19.861261
## 5
      0.9667267
                  0.9881143
                              1.009235
                                         1.030635
                                                    1.053318
## 6
       2.5821310
                  2.6320363
                              2.685510
                                         2.742146
                                                    2.799759
##
         y1969
                    y1970
                              y1971
                                          y1972
                                                     y1973
## 1
       4.654892
                  4.724765
                            4.845413
                                       5.012073
                                                  5.211328
## 2 132.940187 135.477959 137.460942 139.005685 140.386527
    25.280782 25.827776 26.397410
                                      26.991548
                                                  27.613294
## 4
     20.205314 20.557749
                           20.918790
                                      21.290837
                                                  21.675742
## 5
      1.078644
                 1.107609
                            1.140485
                                       1.177090
                                                  1.217356
## 6
       2.855406
                  2.907227
                             2.954377
                                        2.998141
                                                   3.041595
##
         y1974
                    y1975
                               y1976
                                           y1977
                                                      y1978
## 1
       5.423422
                  5.634074
                            5.839022
                                        6.042941
                                                   6.249063
## 2 141.994977 144.115265 146.840771 150.095210 153.787617
     28.267222
                28.956767
                           29.684046
                                       30.449087
                                                  31.251667
## 4
     22.076173
                22.494682 22.931422
                                      23.387920
                                                  23.869952
## 5
      1.261116
                 1.308127
                            1.358635
                                       1.412540
                                                  1.468895
## 6
       3.089004
                  3.143547
                             3.205583
                                       3.274453
                                                  3.351092
##
         y1979
                     y1980
                               y1981
                                           y1982
                                                      y1983
## 1
                  6.690695
                            6.930654
                                        7.181319
       6.463517
                                                   7.442124
## 2 157.758333 161.888551 166.141744 170.550000 175.137578
## 3 32.090511
               32.965280
                           33.878397
                                      34.832512
                                                  35.827856
                                                  26.830793
## 4
    24.384708 24.937292 25.530556
                                     26.163213
## 5
      1.526432
                 1.584296
                            1.641713
                                       1.699001
                                                   1.757680
## 6
       3.436349
                 3.530380
                            3.634855
                                        3.748648
                                                   3.865801
##
         y1984
                    y1985
                               y1986
                                           y1987
                                                      y1988
## 1
      7.712163
                  7.990693
                            8.277943
                                        8.574035
                                                  8.877878
## 2 179.949494 185.001441 190.293731 195.760826 201.273287
                           39.060890
    36.864305
                37.943429
                                      40.220495
                                                 41.440688
     27.526469
                28.245274
                           28.986455
                                       29.751729
                                                  30.542050
## 5
      1.819983
                 1.887287
                            1.960269
                                       2.037842
                                                  2.117529
       3.978269
                  4.080659
                            4.169895
                                        4.248676
## 6
                                                   4.324333
##
         y1989
                     y1990
                              y1991
                                           y1992
                                                      y1993
       9.188078
                  9.503799
                            9.825059
                                      10.152696
                                                 10.487727
## 2 206.661565 211.797391 216.702726 221.400506 225.780880
                           45.667781
                                      47.284525
## 3 42.745796
               44.151259
                                                  48.969165
    31.359002 32.204072 33.077792 33.980676
                                                  34.914020
## 5
      2.195903
                 2.270492
                            2.340307
                                        2.406003
                                                  2.468742
## 6
       4.407419
                  4.505336
                             4.620548
                                        4.750130
                                                  4.889642
##
                               y1996
         y1994
                     y1995
                                           y1997
                                                      y1998
## 1 10.831593
               11.185695 11.551070
                                      11.928748
                                                 12.320206
## 2 229.710553 233.140304 235.985631 238.400701 240.870794
```

```
## 3
                             54.046284
                                         55.708044
      50.675949
                  52.372810
                                                     57.380853
## 4
      35.879342
                  36.878209
                             37.912080
                                         38.982259
                                                     40.090365
## 5
       2.530410
                   2.592370
                               2.655109
                                          2.718093
                                                      2.780555
## 6
       5.032288
                   5.172969
                               5.310336
                                          5.445497
                                                      5.578818
##
          y1999
                      y2000
                                  y2001
                                              y2002
                                                         y2003
## 1
      12.727095
                  13.151097
                              13.592487
                                         14.052633
                                                     14.535557
## 2 244.046885 248.398403 254.110008 261.063590 269.048053
## 3
      59.099840
                  60.889952
                                         64.698421
                              62.759250
                                                     66.695238
## 4
      41.237942
                  42.426689
                              43.657116
                                         44.930921
                                                     46.252270
## 5
       2.841325
                   2.899677
                               2.954984
                                          3.007856
                                                      3.060360
## 6
       5.711281
                   5.843570
                               5.974539
                                          6.103130
                                                      6.230025
##
                                  y2006
          y2004
                      y2005
                                              y2007
                                                         y2008
##
      15.046238
                  15.588034
                             16.162590
                                         16.768559
                                                     17.402450
##
  2 277.713902 286.793692 296.255802 306.160981 316.436994
## 3
      68.730082
                  70.789509
                             72.870672
                                         74.980427
                                                     77.127714
## 4
      47.626349
                  49.056762
                             50.545234
                                         52.090720
                                                     53.690515
## 5
                               3.239476
       3.115288
                   3.174489
                                          3.309264
                                                      3.380162
## 6
       6.356344
                   6.482362
                               6.610275
                                          6.738595
                                                      6.859556
##
          y2009
                      y2010
                                  y2011
                                              y2012
                                                         y2013
                              19.427818
                                         20.139513
## 1
      18.059101
                  18.734456
                                                     20.867715
##
   2 327.011994 337.834969 348.847586 360.046262 371.506581
## 3
      79.325186
                  81.582645
                             83.902359
                                         86.282795
                                                     88.724619
## 4
      55.340270
                  57.036612
                             58.778914
                                         60.567420
                                                     62.400493
## 5
       3.446964
                   3.506264
                               3.556194
                                          3.598805
                                                      3.639363
## 6
       6.962703
                   7.041587
                               7.092741
                                          7.121280
                                                      7.139783
##
          y2014
                      y2015
                                  y2016
                                              y2017
                                                         y2018
## 1
      21.610475
                  22.366553
                             23.135064
                                         23.916538
                                                     24.713052
##
   2 383.344899 395.639797 408.411137 421.613084 435.178271
      91.227758
## 3
                  93.791699
                             96.417763
                                         99.106101 101.853920
## 4
      64.276378
                  66.193801
                              68.151966
                                         70.150892
                                                     72.191283
## 5
       3.685378
                   3.742022
                               3.811240
                                          3.890967
                                                      3.977425
## 6
       7.165840
                   7.212382
                               7.283841
                                          7.377489
                                                      7.490412
```

3. The Affordable Care Act created a market place for individuals to purchase health care plans. In 2014, the premiums for a 27 year old for the different levels health insurance are given in table #2.2.5 ("Health insurance marketplace," 2013). Create a density plot of bronze_lowest, then silver_lowest, and gold_lowest all on the same aces. Use %>% at the end of each command. Describe the story the graphs tells.

Table #2.2.5: Data of Health Insurance Premiums

```
Insurance<- read.csv(
   "https://krkozak.github.io/MAT160/insurance.csv")
head(Insurance)</pre>
```

state average_QHP bronze_lowest silver_lowest gold_lowest

##	1	AK	34	254	312	401
##	2	AL	7	162	200	
##	3	AR	28	181	231	
##	4	AZ	106	141	164	187
##	5	DE	19	203	234	282
##	6	FL	102	169	200	229
##		catastrophic	second_si	ilver_pretax	second_silv	er_posttax
##	1	236		312		107
##	2	138		209		145
##	3	135		241		145
##	4	107		166		145
##	5	137		237		145
##	6	132		218		145
##		lowest_bronze	e_posttax	silver_famil	Ly_pretax	
##	1		48		1131	
##	2		98		757	
##	3		85		873	
##	4		120		600	
##	5		111		859	
##	6		96		789	
##		silver_family	y_posttax	bronze_famil	Ly_posttax	
##	1		205		0	
##	2		282		112	
##	3		282		64	
##	4		282		192	
##	5		282		158	
##	6		282		104	

Code book for Data Frame Insurance

Description The Affordable Care Act created a market place for individuals to purchase health care plans. The data is from 2014.

Format

This data frame contains the following columns:

state: state of insured.

average_QHP: The number of qualified health plans

bronze_lowest: premium for the lowest bronze level of insurance for a single person (\$)

silver_lowest: premium for the lowest silver level of insurance for a single person (\$)

gold_lowest: premium for the lowest gold level of insurance for a single person (\$)

catastrophic: premium for the catastrophic level of insurance for a single person (\$)

second_silver_pretax: premium for the second silver level of insurance for a single person pretax (\$)

second_silver_posttax: premium for the second silver level of insurance for a single person posttax (\$)

second_bronze_posttax: premium for the lowest bronze level of insurance for a single person posttax (\$)

silver_family_pretax: premium for the silver level of insurance for a family pretax (\$)

silver_family_posttax: premium for the silver level of insurance for a family posttax (\$)

bronze_family_posttax: premium for the bronze level of insurance for a family posttax (\$)

Source Health Insurance Market Place Retrieved from website: http://aspe. hhs.gov/health/reports/2013/marketplacepremiums/ib_premiumslandscape. pdf premiums for 2014.

References Department of Health and Human Services, ASPE. (2013). Health insurance marketplace

4. Students in a statistic class took their first test. The following are the scores they earned. Create a density plot for grades. Describe the shape of the distribution.

Table #2.2.6: Data of Test 1 Grades

```
Firsttest_1<- read.csv(
   "https://krkozak.github.io/MAT160/firsttest_1.csv")
head(Firsttest_1)</pre>
```

5. Students in a statistic class took their first test. The following are the scores they earned. Create a density plot for grades. Describe the shape of the distribution. Compare to the graph in question 4.

Table #2.2.7: Data of Test 1 Grades

```
Firsttest_2<- read.csv(
  "https://krkozak.github.io/MAT160/firsttest_2.csv")
head(Firsttest_2)
##
     grades
## 1
         67
## 2
         67
## 3
         76
## 4
         47
## 5
         85
## 6
         70
```

2.3 Other Graphical Representations of Data

There are many other types of graphs. Some of the more common ones are the point plot (scatter plot), and a time-series plot. There are also many different graphs that have emerged lately for qualitative data. Many are found in publications and websites. The following is a description of the point plot (scatter plot), and the time-series plot.

Point Plots or Scatter Plot

Sometimes you have two different variables and you want to see if they are related in any way. A scatter plot helps you to see what the relationship would look like. A scatter plot is just a plotting of the ordered pairs.

2.3.1 Example: Scatter Plot**

Is there a relationship between systolic blood pressure and weight? To answer this question some data is needed. The data frame NHANES contains this data, but given the size of the data frame, it may be not be very useful to look at the graph of all the data. It makes sense to take a sample form the data frame. A random sample is the better type of sample to take. Once the sample is taken, then a scatter plot can be created. The R studio command for a scatter plot is

```
gf_point(response variable ~ explanatory variable, data= Data Frame)
```

Solution:

Table #2.3.1: Random sample of size 100 from the data frame NHANES

```
sample_NHANES <-
NHANES%>%
```

#

#

#

#

#

#

sample n(size = 100)

```
head(sample_NHANES)
## # A tibble: 6 x 76
##
        ID SurveyYr Gender
                             Age AgeDecade AgeMonths Race1
##
     <int> <fct>
                    <fct> <int> <fct>
                                               <int> <fct>
## 1 63223 2011_12
                              59 " 50-59"
                                                   NA White
                    male
                                                   NA Other
## 2 66721 2011 12
                    female
                              47 " 40-49"
                              22 " 20-29"
## 3 70807 2011_12 female
                                                   NA Mexi~
## 4 52460 2009 10 female
                              10 " 10-19"
                                                  122 White
## 5 62784 2011_12 male
                              31 " 30-39"
                                                   NA Hisp~
## 6 63418 2011 12 female
                              40 " 40-49"
                                                   NA White
## # ... with 69 more variables: Race3 <fct>, Education <fct>,
       MaritalStatus <fct>, HHIncome <fct>, HHIncomeMid <int>,
## #
       Poverty <dbl>, HomeRooms <int>, HomeOwn <fct>,
## #
       Work <fct>, Weight <dbl>, Length <dbl>, HeadCirc <dbl>,
## #
       Height <dbl>, BMI <dbl>, BMICatUnder20yrs <fct>,
## #
       BMI_WHO <fct>, Pulse <int>, BPSysAve <int>,
## #
       BPDiaAve <int>, BPSys1 <int>, BPDia1 <int>,
## #
       BPSys2 <int>, BPDia2 <int>, BPSys3 <int>, BPDia3 <int>,
## #
       Testosterone <dbl>, DirectChol <dbl>, TotChol <dbl>,
## #
       UrineVol1 <int>, UrineFlow1 <dbl>, UrineVol2 <int>,
## #
       UrineFlow2 <dbl>, Diabetes <fct>, DiabetesAge <int>,
       HealthGen <fct>, DaysPhysHlthBad <int>,
## #
## #
       DaysMentHlthBad <int>, LittleInterest <fct>,
       Depressed <fct>, nPregnancies <int>, nBabies <int>,
## #
## #
       Age1stBaby <int>, SleepHrsNight <int>,
## #
       SleepTrouble <fct>, PhysActive <fct>,
       PhysActiveDays <int>, TVHrsDay <fct>, CompHrsDay <fct>,
## #
## #
       TVHrsDayChild <int>, CompHrsDayChild <int>,
       Alcohol12PlusYr <fct>, AlcoholDay <int>,
```

Preliminary: State the explanatory variable and the response variable Let x=explanatory variable = Weight y=response variable = BPSys1

AlcoholYear <int>, SmokeNow <fct>, Smoke100 <fct>,

Smoke100n <fct>, SmokeAge <int>, Marijuana <fct>,

AgeRegMarij <int>, HardDrugs <fct>, SexEver <fct>,

AgeFirstMarij <int>, RegularMarij <fct>,

SexAge <int>, SexNumPartnLife <int>,

SexNumPartYear <int>, SameSex <fct>,

SexOrientation <fct>, PregnantNow <fct>

```
gf_point(BPSys1~Weight, data=sample_NHANES)
```

Looking at the graph, it appears that there is a linear relationship between weight and systolic blood pressure though it looks somewhat weak. It also

Figure 2.16: Scatter Plot of Blood Pressure versus Weight

appears to be a positive relationship, thus as weight increases, the systolic blood pressure increases.

Time-Series

A time-series plot is a graph showing the data measurements in chronological order, the data being quantitative data. For example, a time-series plot is used to show profits over the last 5 years. To create a time-series plot on R Studio, use the command

gf_line(response variable ~ explanatory variable, data=Data Frame)

The purpose of a time-series graph is to look for trends over time. Caution, you must realize that the trend may not continue. Just because you see an increase, doesn't mean the increase will continue forever. As an example, prior to 2007, many people noticed that housing prices were increasing. The belief at the time was that housing prices would continue to increase. However, the housing bubble burst in 2007, and many houses lost value, and haven't recovered.

2.3.2 Example: Time-Series Plot**

The bank assets (in billions of Australia dollars (AUD)) of the Reserve Bank of Australia (RBA) and other financial organizations for the time period of September 1 1969, through March 1 2019, are contained in table #2.3.2 (Reserve Bank

of Australia, 2019). Create a time-series plot of the total assets of Authorized Deposit-taking Institutions (ADIs) and interpret any findings.

Table #2.3.2: Data of Date versus RBA Assets

```
Australian<- read.csv(
   "https://krkozak.github.io/MAT160/Australian_financial.csv")
head(Australian)</pre>
```

пес	nead(Australian)						
шш		D-+-	D	A DDA	At- ADT- I	D 1	
##	1			_	Assets_ADIs_E		
		Sep-69 Dec-69	0 90	2.7 2.9		NA NA	
		Mar-70				NA NA	
		Jun-70		3.0 3.0		NA NA	
		Sep-70		3.0		NA NA	
		Dec-70		3.0		NA NA	
##	U				Assets_ADIs_CU		Total
##	1	ABBCUB.		NA	N/		NA
##				NA	NA NA		NA
##	_			NA	NA NA		NA
##				NA	NA NA		NA
##				NA	NA NA		NA
##				NA	NA NA		NA
##		Assets	RFC		_RFCs_Finance	Assets RFCs	
##	1	-	-	NA	n A		NA
##	2			NA	NA		NA
##	3			NA	NA		NA
##	4			NA	NA		NA
##	5			NA	NA		NA
##	6			NA	NA		NA
##		Assets	_Life	e.offices As	ssets_Life_fur	nds Assets_Li	fe_Total
##	1			NA		NA	NA
##	2			NA		NA	NA
##	3			NA		NA	NA
##	4			NA		NA	NA
##	5			NA		NA	NA
##	6			NA		NA	NA
##		Assets	_Oth	er_Public_ti	rusts Assets_0	Other_Cash_tr	
##					NA		NA
##							NA
##	_				NA		NA
##					NA		NA
##					NA		NA
##	6		0		NA		NA
##		Assets	_Uthe	er_Common_fu	inds Assets_Ot		=
##					NA	N.	
##	2				NA	N.	A

3	NA	NA
4	NA	NA
5	NA	NA
6	NA	NA
	Assets_Other_General_insurance	Assets_Other_vehicles
1	NA.	NA
2	NA.	NA
3	NA.	NA
4	NA.	NA
5	NA.	NA
6	NA.	NA
	Assets_Unconsolidated	
1	NA	
2	NA	
3	NA	
4	NA	
5	NA	
6	NA	
	4 5 6 1 2 3 4 5 6 1 2 3 4 5	4

Code book for Data frame Australian

Description The data is a range of economic and financial data produced by the Reserve Bank of Australia and other organizations.

Format

This data frame contains the following columns:

Date: quarters from September 1 1969 to March 1, 2019

Day: The number of days since September 1, 1969 using 90 days between starts of a quarter. This column is to make it easier to graph in R Studio, and has no other purpose.

Assets RBA: The assets for the Royal Bank of Australia

Assets_ADIs_Banks: The assets for Authorized Deposit-taking Institutions (ADIs), Banks

Assets_ADIs_Building: The assets for Authorized Deposit-taking Institutions (ADIs), Building societies

Assets_ADIs_CU: The assets for Authorized Deposit-taking Institutions (ADIs), Credit Unions

Assets_ADIs_Total: The assets for Authorized Deposit-taking Institutions (ADIs), total

Assets_RFCs_MM: The assets for Registered Financial Corporations (RFCs), Money Market Corporations

Assets_RFCs_Finance: The assets for Registered Financial Corporations (RFCs), Finance companies and general financiers

 $Assets_RFCs_Total: \ The \ assets \ for \ Registered \ Financial \ Corporations \ (RFCs) \ total$

Assets_Life offices: The Assets of Life offices and superannuation funds; Life insurance offices

Assets_Life_funds: The Assets of Life offices and superannuation funds; Superannuation funds

Assets Life Total: The Assets of Life offices and superannuation; Total

 $Assets_Other_Public_trusts: \ The \ Assets \ of \ Other \ managed \ funds; \ Public \ unit \ trusts$

Assets_Other_Cash_trusts: The Assets of Other managed funds; Cash management trusts

Assets_Other_Common_funds: The Assets of Other managed funds; Common funds

Assets_Others_Friendly: The Assets of Other managed funds; Friendly societies

Assets_Other_General_insurance: The Assets of Other financial institutions; General insurance offices

Assets_Other_vehicles: The Assets Other financial institutions; Securitisation vehicles

Assets_Unconsolidated: The Assets of Unconsolidated; Statutory funds of life insurance offices; Superannuation

Source Reserve Bank of Australia. (2019, May 13). Statistical Tables. Retrieved July 10, 2019, from https://www.rba.gov.au/statistics/tables/

References Reserve Bank of Australia and other organizations

Solution: variable, x=total assets of Authorized Deposit-taking Institutions (ADIs)

Looking at the code book, one can see that the variable Assets_ADIs_Total is the variable in the data frame that is of interest here. With a time series plot, the other variable is time. In this case the variable in the data frame that represents time is Date. The problem with Date is that the units are every quarter. This is not easily interpreted by R Studio, so a column was created called Day. From the code book, this is the number of days since September 1, 1969 using 90 days between starts of a quarter. Even though this isn't perfect, it will work for determining trends. So create a time series plot of Assets_ADIs_Total versus Day. The command is:

gf_line(Assets_ADIs_Total~Day, data=Australian, title="Total Assets of Authorized Deposit-taking

Figure 2.17: Time-Series Graph of Total Assets of ADIs versus Time

From the graph, total assets of Authorized Deposit-taking Institutions (ADIs) appear to be increasing with a slight dip around 14000 days since September 1, 1969. That would be around the year 2008 (14000 days /360 days per year + 1969).

Be careful when making a graph. If the vertical axis doesn't start at 0, then the change can look much more dramatic than it really is. For a graph to be useful to the reader, it needs to have a title that explains what the graph contains, the axes should be labeled so the reader knows what each axes represents, each axes should have a scale marked, and it is best if the vertical axis contains 0 to show the relationship.

2.3.3 Homework

1. When an anthropologist finds skeletal remains, they need to figure out the height of the person. The height of a person (in cm) and the length of one of their metacarpal bone (in cm) were collected and are in table #2.3.3 (Prediction of height, 2013). Create a scatter plot of length and height and state if there is a relationship between the height of a person and the length of their metacarpal.

Table #2.3.3: Data of Metacarpal versus Height

```
Metacarpal<- read.csv(
   "https://krkozak.github.io/MAT160/metacarpal.csv")
head(Metacarpal)</pre>
```

```
##
      length height
## 1
          45
                 171
## 2
          51
                 178
## 3
          39
                 157
## 4
          41
                 163
## 5
          48
                 172
## 6
          49
                 183
```

Code book for Data frame Metacarpal

Description When anthropologists analyze human skeletal remains, an important piece of information is living stature. Since skeletons are commonly based on statistical methods that utilize measurements on small bones. The following data was presented in a paper in the American Journal of Physical Anthropology to validate one such method.

Format

This data frame contains the following columns:

length: length of Metacarpal I bone in cm

height: stature of skeleton in cm

Source Prediction of Height from Metacarpal Bone Length. (n.d.). Retrieved July 9, 2019, from http://www.statsci.org/data/general/stature.html

References Musgrave, J., and Harneja, N. (1978). The estimation of adult stature from metacarpal bone length. Amer. J. Phys. Anthropology 48, 113-120.

Devore, J., and Peck, R. (1986). Statistics. The Exploration and Analysis of Data. West Publishing, St Paul, Minnesota.

2. Table #2.3.4 contains the value of the house and the amount of rental income in a year that the house brings in (Capital and rental 2013). Create a scatter plot and state if there is a relationship between the value of the house and the annual rental income.

Table #2.3.4: Data of House Value versus Rental

```
House<- read.csv(
   "https://krkozak.github.io/MAT160/house.csv")
head(House)

## capital rental
## 1 61500 6656</pre>
```

```
## 2 67500 6864
## 3 75000 4992
## 4 75000 7280
## 5 76000 6656
## 6 77000 4576
```

Code book for Data frame House

Description The data show the capital value and annual rental value of domestic properties in Auckland in 1991.

Format

This data frame contains the following columns:

Capital: Selling price of house in Australian dollar (AUD)

rental: rental price of a house in Australian dollar (AUD)

Source Capital and rental values of Auckland properties. (2013, September 26). Retrieved from http://www.statsci.org/data/oz/rentcap.html

References Lee, A. (1994) Data Analysis: An introduction based on R. Auckland: Department of Statistics, University of Auckland. Data courtesy of Sage Consultants Ltd.

3. The World Bank collects information on the life expectancy of a person in each country ("Life expectancy at," 2013) and the fertility rate per woman in the country ("Fertility rate," 2013). The data for countries for the year 2011 are in table #2.3.5. Create a scatter plot of the data and state if there appears to be a relationship between life expectancy and the number of births per woman in 2011.

Table #2.3.5: Data of Life Expectancy versus Fertility Rate

```
Fertility<- read.csv(
   "https://krkozak.github.io/MAT160/fertility.csv")
head(Fertility)</pre>
```

##		country	lifexp_2011	fertilrate_2011	
##	1	Macao SAR, China	79.91	1.03	
##	2	Hong Kong SAR, China	83.42	1.20	
##	3	Singapore	81.89	1.20	
##	4	Hungary	74.86	1.23	
##	5	Korea, Rep.	80.87	1.24	
##	6	Romania	74.51	1.25	
##		lifexp_2000 fertilra	te_2000 life	exp_1990 fertilrate_19	90
##	1	77.62	0.94	75.28 1.	69
##	2	80.88	1.04	77.38 1.	27
##	3	78.05	NA	76.03 1.	87
##	4	71.25	1.32	69.32 1.	84

## 5	75.86	1.47	71.29	1.59
## 6	71.16	1.31	69.74	1.84

Code book for Data frame Fertility

Description Data is from the World Bank on the life expectancy of countries and the fertility rates in those countries.

Format

This data frame contains the following columns:

Country: Countries in the World

lifexp_2011: Life expectancy of a person born in 2011 fertilrate_2011: Fertility rate in the country in 2011 lifexp_2000: Life expectancy of a person born in 2000 fertilrate_2000: Fertility rate in the country in 2000 lifexp_1990: Life expectancy of a person born in 1990

fertilrate 1990: Fertility rate in the country in 1990

Source Life expectancy at birth. (2013, October 14). Retrieved from http://data.worldbank.org/indicator/SP.DYN.LE00.IN

References Data from World Bank, Life expectancy at birth, total (years)

4. The World Bank collected data on the percentage of gross domestic product (GDP) that a country spends on health expenditures (Current health expenditure (% of GDP), 2019), the fertility rate of the country (Fertility rate, total (births per woman), 2019), and the percentage of woman receiving prenatal care (Pregnant women receiving prenatal care (%), 2019). The data for the countries where this information is available in table #2.3.6. Create a scatter plot of the health expenditure and percentage of woman receiving prenatal care in the year 2014, and state if there appears to be a relationship between percentage spent on health expenditure and the percentage of woman receiving prenatal care.

Table #2.3.6: Data of Prenatal Care versus Health Expenditure

```
Fert_prenatal<-read.csv(
   "https://krkozak.github.io/MAT160/fertility_prenatal.csv")
head(Fert_prenatal)</pre>
```

##		Country.Name	Country.Code	Region
##	1	Angola	AGO	Sub-Saharan Africa
##	2	Armenia	ARM	Europe & Central Asia
##	3	Belize	BLZ	Latin America & Caribbean
##	4	${\tt Cote \ d'Ivoire}$	CIV	Sub-Saharan Africa
##	5	Ethiopia	ETH	Sub-Saharan Africa

```
## 6
                            GIN
                                       Sub-Saharan Africa
            Guinea
             IncomeGroup f1960 f1961 f1962 f1963 f1964 f1965
##
## 1 Lower middle income 7.478 7.524 7.563 7.592 7.611 7.619
## 2 Upper middle income 4.786 4.670 4.521 4.345 4.150 3.950
## 3 Upper middle income 6.500 6.480 6.460 6.440 6.420 6.400
## 4 Lower middle income 7.691 7.720 7.750 7.781 7.811 7.841
              Low income 6.880 6.877 6.875 6.872 6.867 6.864
## 6
              Low income 6.114 6.127 6.138 6.147 6.154 6.160
##
     f1966 f1967 f1968 f1969 f1970 f1971 f1972 f1973 f1974
## 1 7.618 7.613 7.608 7.604 7.601 7.603 7.606 7.611 7.614
## 2 3.758 3.582 3.429 3.302 3.199 3.114 3.035 2.956 2.875
## 3 6.379 6.358 6.337 6.316 6.299 6.288 6.284 6.285 6.287
## 4 7.868 7.893 7.912 7.927 7.936 7.941 7.942 7.939 7.929
## 5 6.867 6.880 6.903 6.937 6.978 7.020 7.060 7.094 7.121
## 6 6.168 6.177 6.189 6.205 6.225 6.249 6.277 6.306 6.337
     f1975 f1976 f1977 f1978 f1979 f1980 f1981 f1982 f1983
## 1 7.615 7.609 7.594 7.571 7.540 7.504 7.469 7.438 7.413
## 2 2.792 2.712 2.641 2.582 2.538 2.510 2.499 2.503 2.517
## 3 6.278 6.250 6.195 6.109 5.992 5.849 5.684 5.510 5.336
## 4 7.910 7.877 7.828 7.763 7.682 7.590 7.488 7.383 7.278
## 5 7.143 7.167 7.195 7.230 7.271 7.316 7.360 7.397 7.424
## 6 6.369 6.402 6.436 6.468 6.500 6.529 6.557 6.581 6.602
     f1984 f1985 f1986 f1987 f1988 f1989 f1990 f1991 f1992
## 1 7.394 7.380 7.366 7.349 7.324 7.291 7.247 7.193 7.130
## 2 2.538 2.559 2.578 2.591 2.592 2.578 2.544 2.484 2.400
## 3 5.170 5.019 4.886 4.771 4.671 4.584 4.508 4.436 4.363
## 4 7.176 7.078 6.984 6.892 6.801 6.710 6.622 6.536 6.454
## 5 7.437 7.435 7.418 7.387 7.347 7.298 7.246 7.193 7.143
## 6 6.619 6.631 6.637 6.637 6.631 6.618 6.598 6.570 6.535
     f1993 f1994 f1995 f1996 f1997 f1998 f1999 f2000 f2001
## 1 7.063 6.992 6.922 6.854 6.791 6.734 6.683 6.639 6.602
## 2 2.297 2.179 2.056 1.938 1.832 1.747 1.685 1.648 1.635
## 3 4.286 4.201 4.109 4.010 3.908 3.805 3.703 3.600 3.496
## 4 6.374 6.298 6.224 6.152 6.079 6.006 5.932 5.859 5.787
## 5 7.094 7.046 6.995 6.935 6.861 6.769 6.659 6.529 6.380
## 6 6.493 6.444 6.391 6.334 6.273 6.211 6.147 6.082 6.015
     f2002 f2003 f2004 f2005 f2006 f2007 f2008 f2009 f2010
## 1 6.568 6.536 6.502 6.465 6.420 6.368 6.307 6.238 6.162
## 2 1.637 1.648 1.665 1.681 1.694 1.702 1.706 1.703 1.693
## 3 3.390 3.282 3.175 3.072 2.977 2.893 2.821 2.762 2.715
## 4 5.717 5.651 5.589 5.531 5.476 5.423 5.372 5.321 5.269
## 5 6.216 6.044 5.867 5.690 5.519 5.355 5.201 5.057 4.924
## 6 5.947 5.877 5.804 5.729 5.653 5.575 5.496 5.417 5.336
     f2011 f2012 f2013 f2014 f2015 f2016 f2017 p1986 p1987
## 1 6.082 6.000 5.920 5.841 5.766 5.694 5.623
## 2 1.680 1.664 1.648 1.634 1.622 1.612 1.604
                                                  NA
                                                        NA
```

```
## 3 2.676 2.642 2.610 2.578 2.544 2.510 2.475
                                                    NA
                                                          NA
## 4 5.216 5.160 5.101 5.039 4.976 4.911 4.846
                                                    NA
                                                          NA
## 5 4.798 4.677 4.556 4.437 4.317 4.198 4.081
                                                    NA
                                                          NA
## 6 5.256 5.175 5.094 5.014 4.934 4.855 4.777
                                                    NA
                                                          NA
     p1988 p1989 p1990 p1991 p1992 p1993 p1994 p1995 p1996
## 1
        NA
              NA
                    NA
                           NA
                                 NA
                                       NA
                                             NA
                                                   NA
                                                          NA
## 2
        NA
              NA
                    NA
                           NA
                                 NA
                                       NA
                                             NA
                                                    NA
                                                          NA
## 3
        NA
              NA
                    NA
                           96
                                 NA
                                       NA
                                             NA
                                                   NA
                                                          NΑ
## 4
              NA
                                       NA 83.2
        NA
                    NA
                           NA
                                 NA
                                                    NA
                                                          NA
## 5
        NA
              NA
                    NA
                           NA
                                 NA
                                       NA
                                             NA
                                                   NA
                                                          NA
## 6
        NA
              NA
                    NA
                           NA
                               57.6
                                       NA
                                             NA
                                                    NA
     p1997 p1998 p1999 p2000 p2001 p2002 p2003 p2004 p2005
## 1
        NA
              NA
                    NA
                           NA
                               65.6
                                       NA
                                             NA
                                                    NA
                                                          NA
## 2
        82
                    NA
                        92.4
                                       NA
                                             NA
                                                       93.0
              NA
                                 NA
                                                   NA
## 3
        NA
              98
                  95.9 100.0
                                 NA
                                       98
                                             NA
                                                    NA
                                                       94.0
## 4
                  84.3 87.6
                                                   NA 87.3
        NA
              NA
                                 NA
                                       NA
                                             NA
## 5
        NA
              NA
                        26.7
                                       NA
                                             NA
                                                        27.6
                    NA
                                 NA
                                                   NA
## 6
        NA
              NA
                  70.7
                           NA
                                 NA
                                       NA 84.3
                                                    NA
                                                       82.2
     p2006 p2007 p2008 p2009 p2010 p2011 p2012 p2013 p2014
## 1
            79.8
        NA
                                                    NA
                    NA
                           NA
                                 NA
                                       NA
                                             NA
                                                          NA
## 2
                               99.1
        NA
              NA
                    NA
                           NA
                                       NA
                                             NA
                                                   NA
                                                          NA
## 3
     94.0
            99.2
                    NA
                           NA
                                 NA
                                    96.2
                                             NA
                                                   NA
                                                          NA
## 4
     84.8
                                           90.6
              NA
                    NA
                           NA
                                 NA
                                       NA
                                                   NA
                                                          NA
## 5
        NA
              NA
                                     33.9
                                             NA
                    NA
                           NA
                                 NA
                                                   NA
                                                        41.2
## 6
        NA
            88.4
                    NA
                           NA
                                 NA
                                       NA 85.2
                                                   NA
                                          e2001
                                                    e2002
     p2015 p2016 p2017 p2018
                                 e2000
## 1
        NA 81.6
                    NA
                           NA 2.334435 5.483824 4.072288
## 2
        NΑ
            99.6
                    NA
                           NA 6.505224 6.536262 5.690812
## 3
     97.2
            97.2
                          NA 3.942030 4.228792 3.864327
                    NA
## 4
        NA
            93.2
                    NA
                           NA 5.672228 4.850694 4.476869
                           NA 4.365290 4.713670 4.705820
## 5
            62.4
        NA
                    NA
## 6
        NA
            84.3
                    NA
                           NA 3.697726 3.884610 4.384152
##
        e2003
                 e2004
                           e2005
                                    e2006
                                             e2007
                                                       e2008
## 1 4.454100 4.757211 3.734836 3.366183 3.211438 3.495036
## 2 5.610725 8.227844 7.034880 5.588461 5.445144 4.346749
## 3 4.260178 4.091610 4.216728 4.163924 4.568384 4.646109
## 4 4.645306 5.213588 5.353556 5.808850 6.259154 6.121604
## 5 4.885341 4.304562 4.100981 4.226696 4.801925 4.280639
## 6 3.651081 3.365547 2.949490 2.960601 3.013074 2.762090
##
        e2009
                 e2010
                           e2011
                                    e2012
                                             e2013
## 1 3.578677 2.736684 2.840603 2.692890 2.990929 2.798719
## 2 4.689046 5.264181 3.777260 6.711859 8.269840 10.178299
## 3 5.311070 5.764874 5.575126 5.322589 5.727331 5.652458
## 4 6.223329 6.146566 5.978840 6.019660 5.074942 5.043462
## 5 4.412473 5.466372 4.468978 4.539596 4.075065 4.033651
## 6 2.936868 3.067742 3.789550 3.503983 3.461137 4.780977
```

```
## e2015 e2016

## 1 2.950431 2.877825

## 2 10.117628 9.927321

## 3 5.884248 6.121374

## 4 5.262711 4.403621

## 5 3.975932 3.974016

## 6 5.827122 5.478273
```

Code book for Data frame Fert_prenatal

Description Data is from the World Bank on money spent on expenditure of countries and the percentage of woman receiving prenatal care in those countries.

Format

This data frame contains the following columns:

Country.Name: Countries around the world

Country.Code: Three letter country code for countries around the world

Region: Location of a country around the world as classified by the World Bank

IncomeGroup: The income level of a country as classified by the World Bank

f1960-f2017: Fertility rate of a country from 1960-2017

p1986-p2018: Percentage of woman receiving prenatal care in the country in 1986-2018

e200-2016: Expenditure amounts of the countries for medical care in 2000-2016 (% of GDP)

Source Fertility rate, total (births per woman). (n.d.). Retrieved July 8, 2019, from https://data.worldbank.org/indicator/SP.DYN.TFRT.IN Pregnant women receiving prenatal care (%). (n.d.). Retrieved July 9, 2019, from https://data.worldbank.org/indicator/SH.STA.ANVC.ZS Current health expenditure (% of GDP). (n.d.). Retrieved July 9, 2019, from https://data.worldbank.org/indicator/SH.XPD.CHEX.GD.ZS

References Data from World Bank, fertility rate, expenditure on health, and pregnant woman rate of prenatal care.

5. The Australian Institute of Criminology gathered data on the number of deaths (per 100,000 people) due to firearms during the period 1983 to 1997 ("Deaths from firearms," 2013). The data is in table #2.3.7. Create a time-series plot of the data and state any findings you can from the graph.

Table #2.3.7: Data of Year versus Number of Deaths due to Firearms

```
Firearm<- read.csv(
   "https://krkozak.github.io/MAT160/rate.csv")
head(Firearm)

## year rate
## 1 1983 4.31
## 2 1984 4.42
## 3 1985 4.52
## 4 1986 4.35
## 5 1987 4.39
## 6 1988 4.21
```

Code book for Data Frame Firearm

Description The data give the number of deaths caused by firearms in Australia from 1983 to 1997, expressed as a rate per 100,000 of population.

Format

This data frame contains the following columns:

Year: Years from 1983 to 1997

Rate: Rate of deaths caused by firearms in Australia per 100,000 population

Source Deaths from firearms. (2013, September 26). Retrieved from http://www.statsci.org/data/oz/firearms.html

References Australian Institute of Criminology, 1999. The data was contributed by Rex Boggs, Glenmore State High School, Rockhampton, Queensland, Australia.

6. The economic crisis of 2008 affected many countries, though some more than others. Some people in Australia have claimed that Australia wasn't hurt that badly from the crisis. The bank assets (in billions of Australia dollars (AUD)) of the Reserve Bank of Australia (RBA) for the time period of September 1 1969 through March 1 2019 are contained in table #2.3.8 (Reserve Bank of Australia, 2019). Create a time-series plot of the assets of the RBA and interpret any findings.

Table #2.3.8: Data of Date versus RBA Assets

```
Australian <- read.csv(
  "https://krkozak.github.io/MAT160/Australian_financial.csv")
head(Australian)
       Date Day Assets_RBA Assets_ADIs_Banks
## 1 Sep-69
             0
                       2.7
                                           NA
## 2 Dec-69 90
                       2.9
                                           NA
## 3 Mar-70 180
                       3.0
                                           NA
## 4 Jun-70 270
                       3.0
                                           NA
```

##	5	Sep-70 360 3.0	NA	
##	6	Dec-70 450 3.0	NA	
##		Assets_ADIs_Building Assets	_ADIs_CU Assets_AD	Is_Total
##	1	NA	NA	NA
##	2	NA	NA	NA
##	3	NA	NA	NA
##	4	NA	NA	NA
##	5	NA	NA	NA
##	6	NA	NA	NA
##		Assets_RFCs_MM Assets_RFCs_	_	_
##	1	NA	NA	NA
##		NA	NA	NA
##		NA	NA	NA
##		NA	NA	NA
##		NA	NA	NA
##	6	NA	NA	NA
##		Assets_Life.offices Assets_		_
	1	NA	NA	NA
##		NA	NA	NA
##		NA	NA	NA
##	_	NA	NA	NA
##		NA	NA	NA
##	б	NA	NA	NA
##	4	Assets_Other_Public_trusts	Assets_Utner_Casn_	
##		NA		NA NA
##		NA NA		NA NA
##		NA NA		NA NA
##		NA NA		NA NA
##	_	NA NA		NA NA
##	U	Assets_Other_Common_funds A	ssats Others Frien	
	1	NA	bbccb_concrb_rren	NA
##		NA		NA
##	_	NA		NA
##		NA		NA
##		NA		NA
##	_	NA		NA
##	Ū	Assets_Other_General_insura	nce Assets Other v	
##	1		NA	NA
##	2		NA	NA
##			NA	NA
	4		NA	NA
	5		NA	NA
##			NA	NA
##		Assets_Unconsolidated		
##	1	NA		

##	2	NA
##	3	NA
##	4	NA
##	5	NA
##	6	NA

Code book for Data Frame Australian See Example #2.3.2

7. The consumer price index (CPI) is a measure used by the U.S. government to describe the cost of living. Table #2.3.9 gives the cost of living for the U.S. from the years 1913 through 2019, with the year 1982 being used as the year that all others are compared (Consumer Price Index Data from 1913 to 2019, 2019). Create a time-series plot of the Average Annual CPI and interpret.

Table #2.3.9: Data of Time versus CPI

```
CPI<- read.csv(</pre>
 "https://krkozak.github.io/MAT160/CPI_US.csv")
head(CPI)
##
    Year
         Jan Feb
                            May June July Aug Sep Oct
                   Mar
                       Apr
## 1 1913
         9.8
              9.8
                   9.8
                        9.8
                            9.7
                                9.8 9.9 9.9 10.0 10.0
## 2 1914 10.0 9.9
                  9.9 9.8 9.9 9.9 10.0 10.2 10.2 10.1
## 4 1916 10.4 10.4 10.5 10.6 10.7 10.8 10.8 10.9 11.1 11.3
## 5 1917 11.7 12.0 12.0 12.6 12.8 13.0 12.8 13.0 13.3 13.5
## 6 1918 14.0 14.1 14.0 14.2 14.5 14.7 15.1 15.4 15.7 16.0
         Dec Annual_avg PerDec_Dec Perc_Avg_Avg
     Nov
## 1 10.1 10.0
                    9.9
## 2 10.2 10.1
                                1
                                            1
                   10.0
## 3 10.3 10.3
                   10.1
                                2
                                            1
## 4 11.5 11.6
                   10.9
                             12.6
                                          7.9
## 5 13.5 13.7
                   12.8
                             18.1
                                         17.4
## 6 16.3 16.5
                   15.1
                             20.4
                                           18
```

Code book for Data frame CPI

Description This table of Consumer Price Index (CPI) data is based upon a 1982 base of 100.

Format

This data frame contains the following columns:

Year: Year from 1913 to 2019

Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec: CPI for a particular month

Average Avg: The average CPI for a particular year

PerDec Dec: Percent change from December to December

Per_Avg_Avg: Percent change from Annual Average to Annual Average

Source Consumer Price Index Data from 1913 to 2019. (2019, June 12). Retrieved July 10, 2019, from https://www.usinflationcalculator.com/inflation/consumer-price-index-and-annual-percent-changes-from-1913-to-2008/

References US Inflation Calculator website, 2019.

8. The mean and median incomes income in current dollars is given in Table #2.3.10. Create a time-series plot and interpret.

Table #2.3.10: Data of US Mean and Median Income

```
US income<- read.csv(
  "https://krkozak.github.io/MAT160/US income.csv")
head(US income)
##
     year number med_income_current med_income_2017
## 1 2017 127586
                               61372
                                                61372
## 2 2016 126224
                               59039
                                                60309
## 3 2015 125819
                               56516
                                                58476
## 4 2014 124587
                               53657
                                                55613
## 5 2013 122952
                               51939
                                                54744
## 6 2012 122459
                               51017
                                                54569
     mean_income_current mean_income_2017
## 1
                    86220
                                     86220
## 2
                    83143
                                     84931
## 3
                    79263
                                     82012
## 4
                    75738
                                     78500
## 5
                    72641
                                     76565
                    71274
                                     76237
```

Code book for Data Frame US_income

Description This table is of US mean and median incomes in both current dollars and in 2017 dollars.

Format

This data frame contains the following columns:

Year: Year from 1975 to 2017

number: Households as of March of the following year. (in thousands)

med income current: median income of a US household in current dollars

 med_income_2017 : $median\ income\ of\ a\ US\ household\ in\ 2017\ CPI-U-RS\ adjusted\ dollars$

mean_income_current: mean income of a US household in current dollars

mean_income_2017: mean income of a US household in 2017 CPI-U-RS adjusted dollars

Source US Census Bureau. (2018, March 06). Data. Retrieved July 21, 2019, from https://www.census.gov/programs-surveys/cps/data-detail.html

References U.S. Census Bureau, Current Population Survey, Annual Social and Economic Supplements.

Data Sources:

Capital and rental values of Auckland properties. (2013, September 26). Retrieved from http://www.statsci.org/data/oz/rentcap.html

Consumer Price Index Data from 1913 to 2019. (2019, June 12). Retrieved July 10, 2019, from https://www.usinflationcalculator.com/inflation/consumer-price-index-and-annual-percent-changes-from-1913-to-2008/

CPS News Releases. (n.d.). Retrieved July 8, 2019, from https://www.bls.gov/cps/

Current health expenditure (% of GDP). (n.d.). Retrieved July 9, 2019, from https://data.worldbank.org/indicator/SH.XPD.CHEX.GD.ZS

Deaths from firearms. (2013, September 26). Retrieved from http://www.statsci.org/data/oz/firearms.html

Fertility rate, total (births per woman). (n.d.). Retrieved July 8, 2019, from https://data.worldbank.org/indicator/SP.DYN.TFRT.IN

Health Insurance Market Place Retrieved from website: http://aspe.hhs.gov/health/reports/2013/marketplacepremiums/ib_premiumslandscape.pdf

John Matic provided the data from a company he worked with. The company's name is fictitious, but the data is from an actual company.

Kozak K (2019). Survey results form surveys collected in statistics class at Coconino Community College.

Life expectancy at birth. (2013, October 14). Retrieved from http://data.worldbank.org/indicator/SP.DYN.LE00.IN

Population density (people per sq. km of land area). (n.d.). Retrieved July 9, 2019, from https://data.worldbank.org/indicator/EN.POP.DNST

Prediction of Height from Metacarpal Bone Length. (n.d.). Retrieved July 9, 2019, from http://www.statsci.org/data/general/stature.html

Pregnant women receiving prenatal care (%). (n.d.). Retrieved July 9, 2019, from https://data.worldbank.org/indicator/SH.STA.ANVC.ZS

Reserve Bank of Australia. (2019, May 13). Statistical Tables. Retrieved July 10, 2019, from https://www.rba.gov.au/statistics/tables/

Tuition and Fees, 1998-99 Through 2018-19. (2018, December 31). Retrieved from https://www.chronicle.com/interactives/tuition-and-fees

 $\mbox{U.S.}$ Census Bureau, Current Population Survey, Annual Social and Economic Supplements.